
Brief instructions for using the programs of the
package phonetic-languages-simplified-

examples-array
Author and software developer: Oleksandr Zhabenko

License: MIT
Copyright (c) 2020-2021 Oleksandr Zhabenko

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated

documentation files (the "Software"), to deal in the Software without restriction, including without limitation the

rights to use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of the Software, and to

permit persons to whom the Software is furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the

Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT

NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND

NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM,

DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,

OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Introduction
There are different languages. They have different structure and rules. It is possible to create and use (based on one of existing

widely used and well-spoken languages, in particular Ukrainian in this work) a 'phonetic' language that is better suited for poetry

and music. It is even possible to create different versions of phonetic language. This paper proposes to create several different

phonetic languages based on Ukrainian.

Imagine that you can understand the information in the text regardless of the order of the words and preserve only the most

necessary grammar (for example, the rule does not separate the preposition and the next word is preserved). Understand just like

reading a text (after some learning and training, perhaps), in which only the first and last letters are preserved in words in their

positions, and all the others are mutually mixed with each other. So imagine that you can understand (and express your thoughts,

feelings, motives, etc.) the message of the text without adherence to strict word order. In this case, you can organize the words

(keeping the most necessary grammar to reduce or eliminate possible ambiguity due to grammar, or rather a decrease in its

volume), placing them so that they provide a more interesting phonetic sounding. You can try to create poetic (or at least a little

more rhythmic and expressive) text or music.

It can also be an inspiring developmental exercise in itself. But how could you quickly find out which combinations are more or less

fit? Also, can the complexity of the algorithms be reduced?

These are just some of the interesting questions. This work does not currently provide a complete answer to them, but is

experimental one and a research, and any result of it is valuable.

Ukrainian is a language without strict requirements for word order in a sentence (although there are some established preferred

options) and has a pleasant sounding. So, it can be a good example and instance. In addition, it is a native language for the author

of the programs. Even if you don't want to create and use ‘phonetic’ languages where phonetics is more important than grammar,

then you can assess the phonetic potential of the words used in the text to produce specially sounded texts. It can also be valuable

and helpful in writing poetry and possible other related fields [2].

Polyrhythm as a Multi-Ordered Sequence Pattern
Let us have some sequence organized in the following way. Let us implement (generally speaking a conditional one) division of the sequence into
compact single-connected subgroups with the same number of elements each in the subgroup, which actually means that we split the sequence into a
sequence of subsequences with the same number of elements in each. Consider the internal ordering of each subsequence from the perspective of the
placement of the values of its elements and repeatability of the some patterns of the placement of the elements. We assume that the elements can be
compared in relation of order, that is, they are the elements of the data type that has an implemented instance of the class Ord.

Considering that the elements of the subsequences may be pairwise different (or in some cases equal), we will compare the positions on which the
subgroups of elements that have a higher degree of relatedness ("closeness", "similarity") in value and order are located. Denote such subgroups by
indices that have in the module code mostly a letter designation.

Then each subsequence will consist of the same number of elements of one nature (in particular, numbers of the type Double), in each subsequence
there will be selected several subgroups of "similar" elements in value (and order, if the subsequences are sorted by the value), each of which will have
its own index as a symbol (most often in the code -- the characters). Subgroups must have (actually approximately) the same number of elements (in
the code it is not strictly used for simplification of the former one, but it is so in the vast majority of cases because of the excessive "accuracy" of
numbers of type Double that are used). Consider the question of positions in the subsequences of the corresponding subgroups in case of they have
been belonging to different subsequences.

To assess this, we introduce certain numerical functions that have regular behavior and allow us to determine whether the subsequences actually have
elements that belong to the relevant corresponding subgroups in the same places, or on different ones. It can be shown that the situation "on different
ones" corresponds to the presence of several rhythmimc patterns - for each subgroup will be their own, which do not mutually match, at the same time
the ideal situation "completely in the same places" corresponds to the case when these rhythms are consistent with each other, as is the case of
coherence in quantum physics, in particular spatial and temporal coherence, which is important in particular for understanding of lasers and masers.
Polyrhythms consisting of such rhythms, which cohere with each other, form a more noticeable overall rhythm, as well as the presence of coherence in
the radiation leads to a more structured latter one. [3]

Coherent States of Polyrhythmicity as One of the Essential Sources of Rhythmicity
The described pattern of rhythmicity is one of the significant possible options for the formation of rhythmicity in particular in lyrics or music, but not
the only one. It should be noted that the described mechanism of rhythm formation, as is noticed in the statistical experiments with texts using this code
(the code of the library and its dependent packages on the Hackage site) may not be the only possible option, but in many cases it is crucial and
influences the course of the rhythmization process (formation, change or disappearance of the rhythm). It is also known that the presence of the
statistical relationship does not mean the existence of deeper connections between phenomena, in particular -- the causality. "Correlation does not mean
causality." A deeper connection implies the presence of other than the statistical ones to confirm it.

Rap Music Consequences
The code of the library allows in practice to obtain rhythmic patterns that are often close to the lyrics in rap style. Therefore, this can be attributed to
one of the direct applications of the library.

Increasing and Decreasing Functions
Since the 0.5.3.0 version of the phonetic-languages-rhythmicity package the increasing and decreasing functions for the polyrhythmicity evaluation
have become more similar to be more likewise the inverse one to another. This leads to that fact that these functions now are expected to be smoother
for usage for the beginning of the line, its middle and its ending.
Note: since the 0.6.0.0 version of the phonetic-languages-rhythmicity package the values of the properties from the series “c”, ”s”, “t”, “u”, “v” and the
many others (starting from the 0.9.0.0 version) can be negative by sign. This does not influence the logics of the working library functions and
programs. Since the 0.8.0.0 version of the package phonetic-languages-simplified-examples-array there were added also new properties that can be
negative by sign.

Prerequisites for using the software package
At the moment, the programs work for workstations (desktops e. g.), and there are no mobile versions.

You must have Haskell applications installed and configured:

1 GHC (versions not earlier than 7.10)

2 Cabal

The executables of these programs must be searchable through the PATH workspace variable (this is the default setting).

If possible, use the system package manager (programs) to install also important packages Haskell bytestring, vector, heaps,

parallel. If you also plan to use r-glpk-phonetic-languages-ukrainian-durations, then also install and set the programming language

(and better development environment) R.

If the required Haskell packages are not installed using the system manager, they will be installed when installing the packages

(downloaded and installed automatically, with additional time also spent on their compilation).

https://www.haskell.org/cabal/
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/

Remark on terminology
Earlier versions of the packages used the names ‘norms’ and ‘metrices’ for the properties of the texts. Because in the sense typical

of mathematics (including functional analysis) all these properties are not actually metrices and norms (e. g. the inequality of the

triangle is not fulfilled), then the non-ambiguous ‘property’ will be used everywhere instead.

‘Property’ hereafter means the functional representation of the latter.

Installing the package
Open a command prompt or terminal and enter as commands:

cabal update
cabal --reinstall --force-reinstalls install phonetic-languages-plus
cabal --reinstall --force-reinstalls install phonetic-languages-simplified-examples-array
It is also recommended to install the following packages:

cabal --reinstall --force-reinstalls install r-glpk-phonetic-languages-ukrainian-durations
cabal --reinstall --force-reinstalls install mmsyn6ukr-array
The latter is optional, but useful for sound and does not take a lot of space.

If there are messages about outdated command variants, enter instead of update - v1-update, install - v1-install.

Working with the program lineVariantsG3
Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH

environment variable.

The program now supports two modes:

• with one property (normal mode);

• with several (not more than five different) properties.

The latter is used if the command line arguments include a group entered by delimiters +M <property type1> <numeric

arguments1> <property type2> <numeric arguments2> <property type3> <numeric arguments3> <property type4> <numeric

arguments4> <property type5> <numeric arguments5> -M.

More about this at relevant section (see link above). The operation of the program in this mode is described later in a separate

section.

To work in the single property mode, enter the command at the command prompt (or terminal):

lineVariantsG3 <the first argument> [<WX argument> <whether to print property value(s)> <whether to fix the last word> <stay

in place> <whether to use recursive interactive mode>] [<whether to use the multiple sources mode>] <numerical arguments> <

property type> <Ukrainian text>

or:

lineVariantsG3 <the first argument> [<WX argument> <whether to print property value(s)> <whether to fix the last word> <stay

in place > <whether to use recursive interactive mode>] [<whether to use the multiple sources mode>] <numeric arguments >

<property type > <Ukrainian text> <somewhere in the middle arguments as a single group: restrictions>

and press Enter. Additionally, you can set the interactive mode, about what see below for more details .

If you don't specify groups in square brackets, you'll see something like this:

lineVariantsG3 10.0_1.2 yy2 садок вишневий коло хати, хрущі над вишнями гудуть (Ukrainian text entered in

the end of the command line arguments - an excerpt from a famous poem by Taras Shevchenko; in general this line is the entered

command)

 садок колохати хрущі гудуть надвишнями вишневий (in general, there may be several such variants that form one group, as

well as several such groups; all groups follow one another from top to bottom in descending order of the final value of the property,

which maximizes the selected property for given intervals)

[3.6562] (value of selected property before applying interval conversion)

[3.6562] (the value of the selected property after the interval conversion, the final value of the property for this line)

Note that the text may (and probably will not) be written the way it is spelled according to spelling and punctuation rules, but you

can read it and try to understand. By modifying the first arguments entered, you will (most likely) get other output, the same

obviously, it also applies to the Ukrainian text. Too long text will be reduced to a volume that you could understand (perhaps after

previously mentioned training) without effort.

Try to evaluate by reading the variant how it is suitable.

NOTE: Also keep in mind that in single property mode, numeric arguments precede the notation of a property, and in the case of

multiple properties (see below) on the contrary - the designation of the property begins a set of numerical arguments that relate to

it, if any (otherwise default values are used, which are just the same to the search for the maximum element).

Ukrainian information messages
In order for the program to display informational messages in Ukrainian (it displays in English by default), it is required to specify

‘+u’ as one of the command line arguments somewhere outside the option groups, for example, at the beginning. You can also

customize the alias for this version of the program, as for other options, if you like. Refer to the documentation for details

command shells.

More complex usage
Numeric arguments, if specified, have the following meaning.
The first numeric argument is the number of groups with the same maximum property value (in descending order) that will be output on the screen as a
result. If you specify a larger number than there is at all, then all possible results are displayed that satisfy all other conditions. If no numeric arguments
are specified, it is considered equal to 1.
The second numeric argument is the number of intervals into which the interval between the minimum and maximum value of the property for this
line. If not specified, it is considered equal to 1. A value of 0 does not allow other numeric arguments to further change the result of the work of the
program.
All subsequent numeric arguments (if specified, otherwise no permutations occur) are interval numbers that will be swapped with the maximum
number. This allows you to change the structure of the data that is displayed as a result of the program and see the internal (not maximum) items. For
example, the numeric arguments 2 6 1 4 (in this order) will mean that during execution the program will return 2 groups of elements with the
maximum values of the property (the largest and the next largest ones) obtained after permutations of the intervals; the interval between the maximum
and minimum value of the property will be divided into 6 equal intervals, thus elements that are in the first and fourth, counting from the minimum
(interval number 1) will be moved to the largest one; the command will display 2 groups of elements. Values that were in the maximum interval will be
moved to the interval with the lowest number among those that are moved to the maximum one. Thus, at an output these values will be deduced at the
latest.

Parameter +l (+bl) and its usage
NOTE: If there were no +l, +bl, +i, +y ... command line arguments, then each output block will have 2 numbers in square brackets displayed -
the initial value of the property (without moving the intervals) and the value after moving. If there was (at least) one of these (groups) of characters -
the value of the properties will not be printed.
It should also be remembered that:
+bl == +b +l (this is just a reduction in the use of both parameters at once, instead of 7 characters you only need to enter 4).

If you also specify +f ... or +i, then this parameter may not be specified (it will be applied automatically), instead, if you want,

you can specify an additional +b instead.

Parameter +b (+bl) and its usage
If somewhere among the arguments of the command line specify an argument in the form of +b (or +bl), the program will preserve, when outputting
and analyzing, the last word in the line in its place - it is very convenient when you need, having a rhyme, to pick up other words. If not specified, then
all words will be moved (if necessary). The operation of the parameter is actually implemented as an additional constraint , see the following sections.
You can also set additional constraints.
+bl == +b +l (this is just a reduction in the use of both parameters at once, instead of 7 characters you only need to enter 4).
About the use of other parameters a little later.

Multiple properties mode (+m ... -m)
If you specify a group of arguments selected by the +m and -m delimiters from the command line arguments so that the argument group is selected +a
and -a delimiters were not inside this, and vice versa (so that they do not intersect), then the program will work in the multiple properties mode. The
values of the properties will not be displayed on the screen, instead it is possible to set no more than four different properties and to each of them to
specify arguments (see: More complex usage). The program will then find variants that meet each of these conditions, and then display only those
variants that are found in all selected and given properties with parameters. Numerical arguments that stand after the property designation and precede
the next denote a property related to that property. If numeric arguments are omitted, the default values are used (in fact, this is equivalent to simply
searching for maximum property values).
In general, this is the most comprehensive use of this program.
Try, for example, to specify:
lineVariantsG3 +m 02y 3 03y 3 y0 10 -m +bl <Ukrainian text>.

Interactive mode (+i) and its usage
Interactive mode (additional extended user interaction, in addition to the required) is enabled and set accordingly by the

command line argument +i, which can be placed anywhere in the command line. In this case, the program displays not just

lines that satisfy all conditions, but for each line also displays its sequence number (starting with 1) in order of increasing

the ‘weakness’ of all conditions (the higher the number in the general case, the more likely the weaker effect is of given

conditions, although this is not always the case - in particular when you need to withdraw only one group). The program

then asks what the choice is waits for the option number entered by the user. Then returns that option without a number.

It looks something like this:
lineVariantsG3 +i +m 04z 20 02z 20 -m садок вишневий коло хати, хрущі над вишнями гудуть
1 вишневий садок колохати хрущі надвишнями гудуть
2 вишневий хрущі колохати садок надвишнями гудуть
3 вишневий садок надвишнями хрущі колохати гудуть
4 вишневий хрущі надвишнями садок колохати гудуть
5 колохати вишневий гудуть надвишнями хрущі садок
6 надвишнями вишневий гудуть колохати садок хрущі
7 надвишнями вишневий гудуть колохати хрущі садок
8 надвишнями вишневий садок колохати гудуть хрущі
9 надвишнями вишневий хрущі колохати гудуть садок
10 колохати вишневий садок надвишнями хрущі гудуть
11 колохати вишневий хрущі надвишнями садок гудуть
12 надвишнями вишневий садок колохати хрущі гудуть
13 надвишнями вишневий хрущі колохати садок гудуть
14 садок колохати вишневий хрущі надвишнями гудуть
15 хрущі колохати вишневий садок надвишнями гудуть
16 садок надвишнями вишневий хрущі колохати гудуть
17 хрущі надвишнями вишневий садок колохати гудуть
18 колохати гудуть надвишнями вишневий садок хрущі
19 колохати гудуть надвишнями вишневий хрущі садок
20 колохати садок надвишнями вишневий гудуть хрущі
21 колохати хрущі надвишнями вишневий гудуть садок
22 надвишнями хрущі колохати вишневий гудуть садок
23 садок хрущі надвишнями вишневий гудуть колохати
24 колохати садок надвишнями вишневий хрущі гудуть
25 колохати хрущі надвишнями вишневий садок гудуть
26 надвишнями хрущі колохати вишневий садок гудуть
27 садок колохати хрущі надвишнями вишневий гудуть

28 хрущі колохати садок надвишнями вишневий гудуть
29 садок надвишнями хрущі колохати вишневий гудуть
30 хрущі надвишнями садок колохати вишневий гудуть

Please, specify the variant which you would like to become the resulting string by its number.
14
садок колохати вишневий хрущі надвишнями гудуть

Interactive mode of writing a line to a file (+f ...)
If you specify a group of three arguments as +f <path to record file>, then in the specified path to the text file specified, if possible, the
final result of the program will be appended, except that it will be displayed as in the usual interactive mode on the screen. This command line
arguments group can be anywhere between the command line arguments of the program call, but should not be contained inside other arguments of the
form +a ... -a, +m ... -m, etc.
The result can be something like this (colors added for clarity):
lineVariantsG3 +i +f hello.txt +m 04z 20 02z 20 -m садок вишневий коло хати, хрущі над вишнями гудуть
1 вишневий садок колохати хрущі надвишнями гудуть
2 вишневий хрущі колохати садок надвишнями гудуть
3 вишневий садок надвишнями хрущі колохати гудуть
4 вишневий хрущі надвишнями садок колохати гудуть
5 колохати вишневий гудуть надвишнями хрущі садок
6 надвишнями вишневий гудуть колохати садок хрущі
7 надвишнями вишневий гудуть колохати хрущі садок
8 надвишнями вишневий садок колохати гудуть хрущі
9 надвишнями вишневий хрущі колохати гудуть садок
10 колохати вишневий садок надвишнями хрущі гудуть
11 колохати вишневий хрущі надвишнями садок гудуть
12 надвишнями вишневий садок колохати хрущі гудуть
13 надвишнями вишневий хрущі колохати садок гудуть
14 садок колохати вишневий хрущі надвишнями гудуть
15 хрущі колохати вишневий садок надвишнями гудуть
16 садок надвишнями вишневий хрущі колохати гудуть
17 хрущі надвишнями вишневий садок колохати гудуть
18 колохати гудуть надвишнями вишневий садок хрущі
19 колохати гудуть надвишнями вишневий хрущі садок
20 колохати садок надвишнями вишневий гудуть хрущі
21 колохати хрущі надвишнями вишневий гудуть садок
22 надвишнями хрущі колохати вишневий гудуть садок
23 садок хрущі надвишнями вишневий гудуть колохати
24 колохати садок надвишнями вишневий хрущі гудуть
25 колохати хрущі надвишнями вишневий садок гудуть

26 надвишнями хрущі колохати вишневий садок гудуть
27 садок колохати хрущі надвишнями вишневий гудуть
28 хрущі колохати садок надвишнями вишневий гудуть
29 садок надвишнями хрущі колохати вишневий гудуть
30 хрущі надвишнями садок колохати вишневий гудуть

Please, specify the variant which you would like to become the resulting string by its number.
14
садок колохати вишневий хрущі надвишнями гудуть

This end line in the program output will also be appended to the file with the specified name, if possible for this user.
If you wish, you can run the command again with new text and / or new arguments. If similarly the same file is specified, then the new result will be
appended further to the same file. This makes it possible to apply this program consistently, write or rewrite texts (eg, poems).

Mode of simultaneous possible variations of the text
Starting with version 0.3.0.0, the ability to process several variations of text at once has been added, in particular those that deals with synonyms,
paraphrases, etc.
To do this, use the following special construction instead of plain text as extreme arguments:
{<variant1 of the Ukrainian text> / <variant2 of the Ukrainian text> / ... / <variantN of the Ukrainian text>}
with at least two variants inside curly braces. These options will be worked out in turn each in particular during one call of the program, and you will
select one of the variants (possibly the empty one). In the end there will be an opportunity to choose among these pre-prepared versions of the only
one, single final variant, which will be the result (and accordingly, for example, will be displayed and written to a file if provided by command line
arguments).
Please note that the program in this mode provides processing of each of the possible combinations of variations, and therefore, if you specify too
many of them (for example, 3 variations on one word and 4 on another will create 3 * 4 = 12 variations which will be consecutively processed) the
execution time of the program can be longer than expected until you get the final result.

Recursive mode of the work (“+r”)
Starting from the version 0.9.0.0 you can execute the program in the recursive interactive mode. For this, you need to run the command
with the parameter “+r”, e. g. at the beginning after the first argument. In such a case the program will be executed recursively, proposing
to end the recursion on every step. The result of the last step will be the overall result of the program execution.
This mode is incompatible with constraints (because the constraints do not have the proper expected meaning and begin to ‘shift’ from
the needed parts of the text to the other ones), that is why they should not be used simultaneously, this mode can be the alternative to

the latter ones. While execution in the recursive mode there is no possibility to change the call parameters for the properties etc.,
therefore, choose them wisely.
The text changes in this mode are specified by the so called ‘interpreter string’, i. e. the textual input that in the arithmetic expression –
either in a number or division expression encodes the following actions of the program.

• If on the interpreter string the two-digit number is entered then the first digit the program tries to interpret as an index of the first
word (starting counting from 1) to which the change is applied, the second digit is interpreted as a number of the words that are
concatenated further including the first specified one. Afterwards, the program (if it is possible to do so without an error) works with
the newly generated text. For example, the “12” means that the program will concatenate the first word (digit “1”) with the following
ones in the quantity of 2 together (digit “2”) this leads to concatenation of the first two words. “34” means that the program tries to
concatenate consequently 4 words starting from the third one. If it is impossible the program will execute the previous stage again
with prompt to input the interpreter string again.

• If the three- or multi-digit number is specified then all the digits that are not equal to 0 the program tries to interpret as the indices
of the words that are needed to be concatenated in the order of the digits written down in the interpreter string.

• If the digit (greater than 0 and not greater than the number of words on the line) precedes the ‘/’ and then is followed by integer
number with sign. Then the first digit before the ‘/’ sign means the index of the words (counting starts from 1) that is splitted into 2
parts, the second number is the quantity of the symbols that the program counts from the beginning of the word (in case of
positive integer) to the right or from the end of the word (in case of negative integer) to the left to split it into two parts (the positive
case is similar to the work of the standard function ‘splitAt’). Then the program, if the specified string was successfully interpreted
in such a way, will split the specified word into two parts (one of which can be an empty string) and will work with the text in which
the specified word is substituted with these two new words (or just the first of them, if they are not empty and the number of the
words in the line is already equal to 7 at the moment of splitting). For example, the interpreter string “1/5” will split the
“садоквишневий” if it is the first word in the text into “садок вишневий” (counting from the beginning the 5 symbols) and will work
with the new text further.

WX argument
If among properties you use “w” or “x” series (or both ones) then you can specify for them another argument that must begin with “ +x”
with the next written down two positive Double numbers connected by the ‘_’ symbol (underline symbol). For example,
+x2.345_0.45676237876. If this argument is not specified explicitly then the default one +x2.0_0.125 is used.
The first number is used as a factor (multiplier or divisor in case of non-suitability) and it mostly influences the property value, it deals with
the most important syllables in the rhythmic group; on the other hand, the second one is used either just for increasing of the property

value if the less highlighted syllable durations in the rhythmic group (corresponds to ‘w’ series) or also for more complex behaviour (‘x’
series).
More details can be found in the section Types of properties.

Multiple sources usage mode
If among the command line arguments before the Ukrainian text (or instead of one) or after it one specifies a group of
aguments in the *t_ ... ^t frame then the program will work using the multiple sources mode. Instead of underline
character here and ellipsis you can specify also arguments.
At the place of underline the program waits for one of the numbers of: 20, 21, 30, 31, 40, 41, 50, 51, 60, 61, 70, 71,
where 0 as the second digit means that the program won’t have concatenate the lines from each source into one
singular line before its analysis and processments, and the 1 there means that the program will at first concatenate all
the lines of each source into the one single line and only then it will apply the splitting into the parts and other
processments specified by other arguments. The first digit means the number of the words in the lines (except the last
one in every source) that the program will analyse consequently.
At the place of the ellipsis you can specify the paths to the files with Ukrainian texts which is used for the analysis. If
they are left empty then the program will prompt every time the new line in the non-terminating loop (interruptible by
the user) and, afterwards, will process it accordingly to all the other arguments. You can also in such a case just specify
*t (without any other arguments).
Just try, e. g.:
lineVariantsG3 +r 3 w04 *t71 "sadok.txt" "other_poem.txt" "just_text.txt" ^t
lineVariantsG3 +r 3 w04 +t71
lineVariantsG3 +r 3 w04 +t51
where it is expected that the specified files do exist and can be read (the program ignores the files it cannot read).
This mode is also incompatible with the constraints (+a ... -a), instead you should use the recursive mode.

Work with program unconcatUkr
While execution of the lineVariantsG3, rewritePoemG3 there become present some word concatenations for the
preserving the minimae grammar and better text understanding. Some of them are typical and they can be easily
distinguish from the usual (not concatenated) words. Therefore, for the speeding up the text post-editing with the
programs usage you can use also the other program unconcatUkr.
unconcatUkr 1 <path to the file with the concatenated words> [<path to the new file>]
unconcatUkr 2 <path to the file with the concatenated words> [<path to the new file>]

unconcatUkr -i
are the three principal ways to utilize it.
The first one is the ‘safest’, it uses just those unconcatenations, which almost for sure won’t lead to the mistakes in the
words. The second one is more ‘risky’ (aggressive) but has more effect, nevertheless, use it with caution and be aware
of its possible consequences (some not so widely spread words will be wrongly splitted while the execution).
By default, if the number is not specified, then it is equal to 1.

Working with propertiesTextG3 (and distributionTextG)

Option I (lines only)
Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment variable.
Then enter the command at the command prompt (or terminal):
propertiesTextG3 <the first argument> [<WX argument>] [<whether to use ‘growing lines’>] <file with Ukrainian text>
<control of the number of intervals> <control whether to print also text string> <control the division of text into
lines> <property type>

and press Enter.
You will see something like:
propertiesTextG3 2.1_3.0 ~/sadok.txt s 1 0 04z

5
2 2 11 1.0000 5.6200 5.6200 0.30211480 2 1 Тарас ШЕВЧЕНКО

Вказематі
81 83 227 1.0222 2.7902 2.7297 0.53936831 3 1 Садок вишневий колохати
4 10 10 2.2936 2.2936 1.0000 1.39275766 3 5 Хрущі надвишнями гудуть
0 4 7 16.4444 26.2400 1.5957 1.20737478 3 4 Плугатарі зплугами йдуть
36 81 82 2.2345 2.2621 1.0123 1.36997886 3 5 Співають ідучи дівчата
4 4 16 1.1111 4.0625 3.6562 0.43895748 3 1 Аматері вечерять ждуть
81 144 146 1.7778 1.7942 1.0092 1.27248256 3 5 Сем'я вечеря колохати
5 9 16 1.8000 3.2000 1.7778 0.85714286 3 2 Вечірня зіронька встає
1 9 9 8.7059 8.7059 1.0000 1.79393939 3 5 Дочка вечерять подає
36 146 147 4.0625 4.0711 1.0021 1.60221297 3 5 Амати хоче научати
0 4 14 9.0000 32.0400 3.5600 0.54479419 3 2 Так соловейко недає
81 82 145 1.0014 1.7804 1.7778 0.72037537 3 1 Поклала мати колохати
4 4 10 1.0625 2.3906 2.2500 0.62672811 3 1 Маленьких діточок своїх
4 5 16 1.2162 3.9527 3.2500 0.49113233 3 1 Сама заснула колойіх
36 36 91 1.0038 2.5266 2.5170 0.56929225 4 1 Затихло все тілько дівчата
0 0 4 1.0000 9.0000 9.0000 0.20000000 2 1 Тасоловейко незатих

Міжітравня

С-Петербург

Numeric columns have the same value for both options. The difference is that in the second case the statistics on the whole text is more important from
the point of view of the researcher than for each line in particular.
Column I is the minimum possible value of the selected property for the given data among all possible variants of permutations of words in line;
Column II is the actual value of the selected property for the specified data in the row, the one that is implemented in this particular version of the row;
Column III is the maximum possible value of the selected property for the given data among all possible variants of word permutations in line;
Column IV is the ratio of the value of the property for a given row and its minimum value for the words that make up the row; a numeric, which is not
less than 1.0;

Column V is the ratio of the maximum value of the property for the words of this line and its minimum value, which consists

of line; a number that is not less than 1.0 and not less than the number in column IV;

Column VI is the ratio of the maximum value of a property for a given row and its actual value; a number that is not less than 1.0 and not greater than
the value in the V column;
Column VII is the ratio of the actual value of the property to the arithmetic mean (half-sum) of the maximum and minimum values for all possible
permutations of words for a given data; a number that is displayed with the full calculated number of characters after dots; is important for further
statistics for the whole text;
Column VIII is the number of words in a line, some of which may consist of several connected Ukrainian words;
Column IX is the number of the interval (starting with 1), which includes the actual value of the property for the specified data;
Further to the right - if <control whether to print also a line of text> as ‘1’, then a line of text that is being analyzed is displayed here; otherwise, it is
not displayed.

Option II - statistics throughout the text (+ possibly lines)
Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment variable.
Then enter the command in the terminal:
propertiesTextG3 <the first argument> [<WX argument>] [<whether to use ‘growing lines’>] <file with Ukrainian text>
<control of the number of intervals> <control whether to print also text string> <control the division of text into lines
> <property type> | distributionTextG <same row argument> <whether also display ordinal data>

and press Enter. In Unix-like operating systems, the vertical line (highlighted in red) is used to create pipelines in the shell terminal;
for Windows:
PowerShell -Command "propertiesTextG3 <the first argument> [<WX argument>] [<whether to use ‘growing lines’>] <file with
Ukrainian text> <quantity control intervals> <control whether to print also text string> <control the division of text
into lines> <property type> | distributionTextG < same row argument > <or also display ordinal data >'

You will see something like:
propertiesTextG3 2.1_3.0 ~/sadok.txt s 1 0 02y | distributionTextG s 1 +W
 4

3 3 5 1.0000 1.7000 1.7000 0.74074074 2 1 Тарас ШЕВЧЕНКО
 Вказематі
108 108 142 1.0000 1.3111 1.3111 0.86538462 3 1 Садок вишневий колохати
4 34 34 8.5180 8.5180 1.0000 1.78987107 3 4 Хрущі надвишнями гудуть
3 25 25 8.1680 8.1680 1.0000 1.78184991 3 4 Плугатарі зплугами йдуть
108 109 110 1.0049 1.0194 1.0145 0.99518569 3 2 Співають ідучи дівчата
4 4 34 1.0000 8.5180 8.5180 0.21012893 3 1 Аматері вечерять ждуть
108 245 245 2.2694 2.2694 1.0000 1.38827528 3 4 Сем'я вечеря колохати
3 34 34 11.1680 11.1680 1.0000 1.83563445 3 4 Вечірня зіронька встає
3 25 89 8.1680 29.6720 3.6327 0.53260303 3 1 Дочка вечерять подає
108 277 277 2.5611 2.5611 1.0000 1.43837754 3 4 Амати хоче научати
3 3 13 1.0000 4.3111 4.3111 0.37656904 3 1 Так соловейко недає
108 142 245 1.3111 2.2694 1.7309 0.80203908 3 1 Поклала мати колохати
3 3 25 1.0000 8.1680 8.1680 0.21815009 3 1 Маленьких діточок своїх
3 12 25 4.0000 8.1680 2.0420 0.87260035 3 2 Сама заснула колойіх
27 29 242 1.0778 8.9778 8.3299 0.21603563 4 1 Затихло все тілько дівчата
4 4 12 1.0000 3.0508 3.0508 0.49372385 2 1 Тасоловейко незатих
 Міжітравня
 С-Петербург
--
1 2 3 4
9 2 0 5
56.25% 12.50% 0.00% 31.25%
0.9098+-0.5590 0 16
2 3 4 5 6 7
2 13 1 0 0 0
**
2 . . .
6 2 . 5
1 . . .
. . . .
. . . .
. . . .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
2       0       0       0
6       2       0       5
1       0       0       0
0       0       0       0
0       0       0       0
0       0       0       0

There will be no color highlighting, just different types of statistics are grouped here (see the table below for semantics).



Color Data type Value

Red Decimal fraction with error The arithmetic mean (mathematical expectation) of all numbers in column VII statistics for rows, 
plus or minus standard quadratic deviation; in the case of the selected properties "y0" - often a 
number close to 1.0; may contain a rounding error caused by finding the sum of numbers with 
floating point. In case all lines of text excluded from the analysis (see: explanation for orange) only
one line of text - signal inscription is displayed instead of matrices and further information:
"1,000+-0,000\tALL!",
where '\t' means a tab character. This label means that the specified text is not suitable for program 
analysis as well as that any data that is gotten during the execution of the program (could be 
derived from this text and related texts) should be analyzed as follows, so as not to refute the 
conclusions made on based on the whole set of texts. Simlply speaking, in this case, you can not 
take into account the text, because with the right approach to the analysis and interpretation of data 
it should not break the results.

Blue Natural numbers Row distribution matrix by number of words and intervals; matrix element in the k-th row and j-th 
column - the number of rows for which the value of the selected property with the specified data 
falls in the interval with the number j (numbering starts with 1), which is equal to matrix column 
number, and contains in the line k words (words or combinations thereof that are displayed merged 
to comply with minimum grammar rules in data analysis and output), the number k is in the range 
between 2 and 7 inclusive (rows that are analyzed for the matrix contain from 2 to 7 words (or 
written together their concatenations)). Thus, the matrix always has 6 rows, and the number of 
columns will depend on entered and available data. In fact, this matrix replaces the graphical two-
dimensional data distribution. It is displayed twice, one after the other delimited by tildes. In the 
first case zero values are not displayed, instead there are dots. This is an element of data 
visualization, which allows you to better ‘see’ how a distribution looks like where numeric values 
correspond to the ‘height’ on the distribution graph (the value of the discrete two-dimensional 
function distribution). In the second case in place of dots there are the corresponding values, which 
are all equal to 0. Data for the matrix are obtained from VIII and IX columns of statistics by rows.

Orange Non-negative integers Total number of rows. The first number on the left is the number of rows that are excluded from the
analysis for the matrix, because they have little data (1 or less words). Equality 0 means that all 
lines displayed on the screen participate in the analysis for formation of a distribution matrix. 



Color Data type Value

Number on the right - the total number of lines in the text that are displayed and analyzed 
(including those rows that are listed on the left).

Green Percents Distribution of the total number of rows by intervals. The sum of percentage values naturally equal 
to 100%. Interval numbers inscribed above the corresponding percentage values. For example, the 
inscription in these three lines type:
1 2
10 15
40% 60%
means that of the total number of rows, which can be analyzed using the program (contain enough 
data), 40% is accounted for by the first interval (with a smaller value properties), and 60% - by the 
second one (according to greater value of the property). That is such lines 10 and 15, respectively. 
All intervals are equal in size, but can have different numbers of rows. This is a simple one-
dimensional distribution, it is possible to build a histogram.

Magenta Natural numbers Interval numbers. The countdown begins with 1. Further below they correspond to the number of 
lines, values of the properties for which according to the data falls into the corresponding number 
interval.

Purple Natural numbers Number of words in lines. Lies within 2 up to 7 inclusive (if there are less words, then the line gets 
a value of 1.0 and is removed from analysis program for the matrix). Under them - the 
corresponding values of the number of such lines. 0 corresponds to the case of the absence of lines 
with the number of words (or concatenations that are displayed as one word).

Careful study of these data allows us to draw certain conclusions about the text, their totality, the model and language itself.

Statistics mode by multiple properties (+m ... -m)
Now, as for the program lineVariantsG3, you can use the mode of multiple properties. To do this, instead of one property it is possible to specify 
multiple ones in the block selected by delimiters +m ... -m.
In this case, the program will display something like:
propertiesTextG3 sadok.txt s 1 0 +m y0 0y 02y 03y y2 y3 yyy -m                                                           
4
2       4       2       1       2       4       4       1       Тарас ШЕВЧЕНКО
                                                                Вказематі



3       4       4       1       2       4       2       1       Садок вишневий колохати
3       4       1       4       4       4       4       4       Хрущі надвишнями гудуть
3       4       4       4       1       4       1       1       Плугатарі зплугами йдуть
3       2       4       1       1       2       1       4       Співають ідучи дівчата
3       2       2       1       1       1       1       4       Аматері вечерять ждуть
3       1       3       4       1       3       1       3       Сем'я вечеря колохати
3       3       4       4       4       4       4       2       Вечірня зіронька встає
3       4       2       1       4       2       4       1       Дочка вечерять подає
3       4       4       4       1       4       2       1       Амати хоче научати
3       4       1       1       4       1       4       4       Так соловейко недає
3       4       4       2       1       2       4       2       Поклала мати колохати
3       1       4       1       1       1       1       4       Маленьких діточок своїх
3       1       4       2       4       1       2       4       Сама заснула колойіх
4       3       3       1       1       1       1       1       Затихло все тілько дівчата
2       4       4       1       1       1       1       4       Тасоловейко незатих
                                                                Міжітравня
                                                                С-Петербург

In this case, you do not need to use the distributionTextG program, because its behaviour is not defined here.
The first column (highlighted in color here) - the number of words in the appropriate rows; the columns follow in the order in which they appear
marked in the block of several properties, respectively - the numbers of the intervals, which include the values of the corresponding properties. The
first number on the right (highlighted in red and the only one in its line) is the number of intervals for each property (they are all the same). Eight
columns in this case to text records - means that there were 7 (= 8 - 1) given properties in the block.

White String Mode
The program can also now use ‘white lines’ mode, which means that lines that contain fewer words than needed to ensure the existence of at least two
variants  of  the  string,  do  not  display  statistics  and it  is  not  included in  the  overall  result.  Then in the  case of  one  metric  and the  use  of  the
distributionTextG program, you need to call the latter with an additional one argument +W (means whitelines).
For example, in this case you will see:
propertiesTextG3 sadok0.txt s 1 0 03y +b | distributionTextG s 1 +W 
        4
        Тарас ШЕВЧЕНКО
        Вказематі
52      52      81      1.0000  1.5577  1.5577  0.78195489              3       1       Садок вишневий колохати
4       14      14      3.2040  3.2040  1.0000  1.52426261              3       4       Хрущі надвишнями гудуть
1       1       4       1.0000  2.7692  2.7692  0.53061224              3       1       Плугатарі зплугами йдуть
36      36      40      1.0000  1.1111  1.1111  0.94736842              3       1       Співають ідучи дівчата
1       1       1       1.4444  1.4444  1.0000  1.18181818              3       4       Аматері вечерять ждуть
36      36      52      1.0000  1.4444  1.4444  0.81818182              3       1       Сем'я вечеря колохати
14      14      14      1.0000  1.0000  1.0000  1.00000000              3       2       Вечірня зіронька встає



1       14      14      14.2400 14.2400 1.0000  1.86876640              3       4       Дочка вечерять подає
37      37      37      1.0000  1.0000  1.0000  1.00000000              3       2       Амати хоче научати
1       4       4       4.0000  4.0000  1.0000  1.60000000              3       4       Так соловейко недає
36      40      40      1.1111  1.1111  1.0000  1.05263158              3       4       Поклала мати колохати
1       1       1       1.0000  1.0000  1.0000  1.00000000              3       2       Маленьких діточок своїх
1       4       4       4.4444  4.4444  1.0000  1.63265306              3       4       Сама заснула колойіх
10      10      37      1.0000  3.7000  3.7000  0.42553191              4       1       Затихло все тілько дівчата
        Тасоловейко незатих
        Міжітравня
        С-Петербург
------------------------------------------------------------------------------------------------------
1       2       3       4
5       3       0       6
35.71%  21.43%  0.00%   42.86%
1.0974+-0.4077  0       14
2       3       4       5       6       7
0       13      1       0       0       0
******************************************************************************************************
.       .       .       .
4       3       .       6
1       .       .       .
.       .       .       .
.       .       .       .
.       .       .       .
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
0 0 0 0
4 3 0 6
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The ‘white’ lines here are shown in light colour but not white.

Fixed-line statistics (+b)
If you specify as one of the command line arguments for propertiesTextG3 characters +b, the program will calculate all statistics, as if the last
word is fixed by constraint and does not move. In fact, in this case, the meaning of this symbol (argument) is similar to the lineVariantsG3 program. It
is necessary to remember that it narrows a range of admissible values of properties and at invariable quantity of lines changes distributions inside the
intervals.

Control the number of intervals
There are three possible cases:

• ‘S’ - the number of intervals will be determined by the well-known Sturge's rule where the number of tests will be equal to the resulting number
of lines;

• ‘L’ - the number of intervals will be determined on the recommendation of V. P. Levinsky (see: Опря А. Т. Статистика (модульний варіант з
програмованою формою контролю знань). – Навч. посіб. – К.: Центр учбової літератури, 2012. – 448 с. ISBN 978-611-01-0266-7. С. 60);

• number - the number of intervals will be a natural number (must be greater than 1, although this is not checked);
• something else - will be used 9.

You can also control whether to print lines of the text
If this argument is 1, then to the right of the numerical data of the ordinal statistics a line that is analyzed will also be displayed (already converted for
analysis). Otherwise the string will not be displayed in the output.

Control the division of text into lines
If you specify 1 here, the text will firstly be grouped into one line, and then divided into lines by the method of division in half (by the number of
words or their cocatenations) until the length of all lines is less than 8 words or their combinations. Foreign characters will be filtered.
If set to 0, the text will be parsed after filtering out extraneous characters (approximately) in the lines that were originally.

Whether to use ‘growing lines’ mode
If among the command line arguments you specify “+gab”, where a, b are some digits except 0, then the ‘growing lines’ mode is used. This means that
the text is transformed in a way so that at first the maximum number of words in lines is no greater than the second digit and then the lines are grouped
so that the number of words in every line is close to the first digit if it can be achieved by concatenation of the lines into the single one consequently. In
other words, there will be done some transformation of the text by lines to make the number of words in every line closer to the first digit and no more
than 7 (for the last one the quotient is used). In such a case, the control of division of text into lines plays less role, but it can influence if it is equal to
1. For example, “+g73” as a command line argument means that after the application of the division of the lines all them are partitioned so that in every
line there are at first no more than 3 words or their concatenations and then the lines are concatenated so that in every of them there are a number of the
words close to 7 (and no more).

The same argument for the number of rows
It means there should be the same value, as in the place of control of the number of intervals.

http://www2.esalq.usp.br/departamentos/lce/arquivos/aulas/2013/LCE0216/Sturges1926.pdf

Whether to display serial data as well
Here it is necessary to put 1 so that the program prints all statistics (at first by lines, and then the general on the text), otherwise only the general text is
printed.

Selective analysis of text by lines
If you execute a command
propertiesTextG3 <path to the file with Ukrainian text for analysis> @n

then the text from the file will be displayed on the screen and will be shown with the numbers of all lines to the left of the lines themselves, separated
from the text using the tab character (displayed as a space with a non-constant width, which depends on the system settings). Then you can run the
same program (you can do without it, but you can specify other numbers than the program will consider) for analysis the selected rows. To do this, to
the commands propertiesTextG3, in addition to the last mentioned, anywhere in the command line to the vertical bar (up to pipeline) add the first and
last line numbers, separated by a colon (without any other characters, including spaces). You can specify several such pairs, the information will be
displayed in the same order. If some line numbers will occur several times, they will be displayed (if this option is specified) and analyzed several
times (probably, due to the laziness of Haskell programming language, they can use (if they are not garbage collected till the time of re-usage) the once
calculated and memoized results). If text break control is specified on lines equal to 1, then the program will combine and analyze the lines whose
numbers were specified and correspond to the numbers when outputting the command from @n.
All this allows you to focus on the text or only part of it.

Working with rewritePoemG3
Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment variable.
Then enter the command at the command prompt (or terminal):
rewritePoemG3 <first argument > [<whether to grow lines>] <Ukrainian text file> <property type> <numerical arguments>

and press Enter.
You will see something like the following:
rewritePoemG3 10.0_1.2 sadok.txt yyy 5 1 2

Upon successful completion of the program (there should be no messages) in the same folder (directory) as the file with the text that is overwritten,
there must be a file with the additional ending '.new.txt'. It is there that the converted text (for example, a poem) is written according to the input data.
The entered data applies to the entire text, to each line of text in particular (after its preliminary processing by the program).

More complex usage
Numeric arguments have much the same meaning as for the lineVariantsG3 program.
Numeric arguments, if specified, have the following meaning.

The first numeric argument is the number of intervals into which the interval between the minimum and maximum value of the property for this line. If
not specified, it is considered equal to 1. A value of 0 does not allow other numeric arguments to further change the result of the work of the program.

All subsequent numeric arguments (if specified, otherwise no permutations occur) are interval numbers that will be swapped with the interval with the

maximum values of the property. This allows you to change the structure of the data that is displayed as a result of the program and see the internal (not maximum)

items. For example, the numeric arguments 6 1 4 (in this order) will mean that during program execution the interval between the maximum and minimum value of

the property will be divided into 6 equal intervals, with the elements that are in the first and fourth, counting from the minimum (interval number 1) will be moved to

the maximum number (and property values) interval, and then the line with the maximum value of the property is written to the output file. Values that were in the

maximum interval will be moved to the interval with the lowest number among those that are moved to maximum.

Comparative mode of operation (+c)
rewritePoemG3 can also be run in so-called ‘comparative’ mode, when it offers strings (one after the other) of two specified files and writes the
selected (or blank line, if none is selected) to the third file. So from two files by their comparison by lines you can create a new one. It also allows you
to run the program twice or more times with different settings in the normal mode, then run it in the comparative mode on the received files and create
in a fairly easy way their combinations - new variants.
Note: If you plan to get more ‘hints’ and recommendations from the program, it is probably easier (and better) to apply an interactive mode of the
lineVariantsG3 program with several properties instead.
To operate in the comparative mode, use the following command:
rewritePoemG3 +c <file1> <file2> <file3> (all files must be different, and the first two ones must already exist with the
text, otherwise the program will not give a significant result).

Types of properties
One of the principles of the program is to search among the text options for those for which the maximum is the value of a function called ‘property’ of
the text (just simply: property) and is a specific property for lines. The user can choose the property that will be used during program operation (this is
done in the command line once during program operation by the geven (or absent respectively) command line argument). The command line argument
of the program call can be:
• ‘y0’ - the first property in time, based on 'periods of uniqueness'. The idea is to estimate the number of sounds, or
pauses, or phonetic phenomenae (palatalization of consonants), which are between successive appearances of each
sound not in one, but in different words, and the total sum of such distances for different words is sought. The greater
the value corresponds to the text with a smoother variable phonetic pattern, (probably) depending on the average
number of sounds in the ‘period of uniqueness’ it may be easier to speak, otherwise it is (may be) harder to speak; less
meaningful - on the contrary - text with more rapid changes in phonetic pattern, possibly with amplification of separate

https://hackage.haskell.org/package/dobutokO-poetry-0.8.1.0

groups of sounds, which is more typical for intonationally selected and / or poetic texts with appealed or highlightened
emotions. When using this property (and only it) the first argument of the program call string does not matter (it is
ignored by the program).

• ‘0y’ is the first version of the rhythm-only analysis property (semi-empirical), based on the function of rhythm, that uses the durations of sounds
that have been synthesized in the mmsyn6ukr-array software package. The rhythm function is inspired by antiquity poetry, where instead of
stressed and unstressed syllables rhythmically short and long alternated; also musical destinies for which the main ones are two-part rhythm and
three-part rhythm. The function is implemented in such a way as to make it as easy as possible to capture significant emissions subrhythms for
two-syllable and three-syllable cases. Using the <first argument> you can change the ratio of these subproperties and, accordingly, to change
the property itself.

• '02y' is a '0y'-like property that uses other durations of sounds synthesized by the r-glpk-phonetic-languages-ukrainian-durations. Probably one of the
most accurate in this version of the available for the task of writing rhythmic text. You can create other variations of sound durations using the
capabilities of the package r-glpk-phonetic-languages-ukrainian-durations or in some other way.
• '03y' is a '02y'-like property that uses other durations of sounds synthesized by the r-glpk-phonetic-languages-ukrainian-durations package. Probably
one of the most accurate in this version of the available for the task of writing the rhythmic text. You can create other variations of sound durations
using the capabilities of the package r-glpk-phonetic-languages-ukrainian-durations or in some other way.
• '04y' is a '02y'-like property that uses other durations of sounds synthesized by the r-glpk-phonetic-languages-ukrainian-durations package. These
sound durations are derived from data other than 0y, 02y and 03y, so be careful while mixing them in a multiple properties mode.
• 'y' - a property that calculates the properties of 'y0' and '0y' in a more efficient way than each of them alone, and then multiplies the received data.
Gives higher values for lines with a more smoothly changing phonetic pattern and those that are more rhythmic (from the point of view of the property
'0y'). The use of the <first coefficient> internally affects only the sub-property '0y'.
• 'y2' is a property similar to ‘y’, but uses the variant with '02y' instead of the second sub-property (rhythmicity).
• 'y3' is a property similar to ‘y’, but uses the variant with '03y' instead of the second sub-property (rhythmicity).
• 'y4' is a property similar to ‘y’, but uses the variant with '04y' instead of the second sub-property (rhythmicity).
• 'yy' - a property that uses the property 'y0' and '0y', and instead of multiplying them, divides the result of the second
by the result of the first. Maximized for texts with high rhythmicity (in terms of the '0y' property) and grouping of
identical sounds into the groups that are closer to each other. The use of the <first coefficient> affects only the sub-
property '0y'.
• 'yy2' - a property that uses the property 'y0' and '02y', and instead of multiplying them, divides the result of the second by
the result of the first. Maximized for texts with high rhythmicity (in terms of the property '02y') and grouping of identical
sounds in groups closer to each other. The use of the <first coefficient> internally affects only the sub-property '02y'.
• 'yy3' - a property that uses the property 'y0' and '03y', and instead of multiplying them, divides the result of the second by
the result of the first. Maximized for texts with high rhythmicity (in terms of the property '03y') and grouping of identical
sounds in groups closer to each other. The use of the <first coefficient> internally affects only the sub-property '03y'.
• ‘yy4’ - similar to 'yy' with the difference that instead of '0y' is used '04y'.

https://hackage.haskell.org/package/r-glpk-phonetic-languages-ukrainian-durations
https://hackage.haskell.org/package/r-glpk-phonetic-languages-ukrainian-durations
https://hackage.haskell.org/package/r-glpk-phonetic-languages-ukrainian-durations
https://hackage.haskell.org/package/mmsyn6ukr-array

'Z' -line
• '0z'
• '02z'
• '03z'
• '04z'
• 'z'
• 'z2'
• 'z3'
• 'z4'
• 'zz'
• 'zz2'
• 'zz3'
• 'zz4'
These properties are similar to the corresponding ones, where z is replaced by y. But they use more complex rhythmic functions derived from the
module Languages.Rhythmicity.Factor from the package phonetic-languages-rhythmicity. Carefully use mixed properties in multiple properties mode,
because they actually represent different approaches within the general method, so they can give in pairs less compatible results, but when used
correctly they give an acceptable result. You may need a little practice, also more often use the propertiesTextG program.
Besides, while working with the following properties the concept of the polyrhythmicity as a source of rhythmicity is used.

• "w01" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another maximum one
influences less. As a variant of the durations calcuation function syllableDurationsD is used;

• "w02" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another maximum one
influences less. As a variant of the durations calcuation function syllableDurationsD2 is used;

• "w03" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another maximum one
influences less. As a variant of the durations calcuation function syllableDurationsD3 is used;

• "w04" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another maximum one
influences less. As a variant of the durations calcuation function syllableDurationsD4 is used;

https://hackage.haskell.org/package/phonetic-languages-rhythmicity-0.2.0.0/docs/Languages-Rhythmicity-Factor.html

• "w11" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD is used;

• "w12" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD2 is used;

• "w13" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD3 is used;

• "w14" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD4 is used;

• "w21" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two maximum ones
influence less. As a variant of the durations calcuation function syllableDurationsD is used;

• "w22" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two maximum ones
influence less. As a variant of the durations calcuation function syllableDurationsD2 is used;

• "w23" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two maximum ones
influence less. As a variant of the durations calcuation function syllableDurationsD3 is used;

• "w24" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two maximum ones
influence less. As a variant of the durations calcuation function syllableDurationsD4 is used;

• "w31" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD is used;

• "w32" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD2 is used;

• "w33" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD3 is used;

• "w34" – more complex rhythmic structure with some another way of determining the property value, it takes the string as the text with
rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another minimum one
influences less. As a variant of the durations calcuation function syllableDurationsD4 is used;

• "x01" – similarly to the “w01”, but with more complex dependency for the less significant duration and probably less prognosable results;
• "x02" – similarly to the “w02”, but with more complex dependency for the less significant duration and probably less prognosable results;
• "x03" – similarly to the “w03”, but with more complex dependency for the less significant duration and probably less prognosable results;
• "x04" – similarly to the “w04”, but with more complex dependency for the less significant duration and probably less prognosable results;

The following values are similar to the corresponding “w” with more complex dependency (as just described ones). Among them:
• "x11"
• "x12"
• "x13"
• "x14"
• "x21"
• "x22"
• "x23"
• "x24"
• "x31"
• "x32"
• "x33"
• "x34"

If this argument is as follows, then a polyrhythmic analysis of the text is used. More complex properties of the text are searched and checked
using more comprehensive by structure properties. This is a research direction in the programs and library usage. Besides there is a possibility
also to specify your own custom configuration using the ‘c’, ‘C’, ‘N’ modes. Therefore, the following is used:

• "u01" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of 5
syllables. For syllable durations is used syllableDurationsD;

• "u02" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of 5
syllables. For syllable durations is used syllableDurationsD2;

• "u03" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of 5
syllables. For syllable durations is used syllableDurationsD3;

• "u04" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of 5
syllables. For syllable durations is used syllableDurationsD4;

• "u11" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD;

• "u12" → A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD2;

• "u13" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD3;

• "u14" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD4;

• "u21" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the groups of
5 syllables. For syllable durations is used syllableDurationsD;

• "u22" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD2;

• "u23" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD3;

• "u24" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD4;

• "u31" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD;

• "u32" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD2;

• "u33" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD3;

• "u34" -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD4;

• "u41" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD;

• "u42" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD2;

• "u43" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD3;

• "u44" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD4;

• "u51" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD;

• "u52" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD2;

• "u53" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD3;

• "u54" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD4;

• "u61" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD;

• "u62" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD2;

• "u63" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD3;

• "u64" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the groups
of 5 syllables. For syllable durations is used syllableDurationsD4;

• "u71" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD;

• "u72" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD2;

• "u73" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD3;

• "u74" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the groups of
5 syllables. For syllable durations is used syllableDurationsD4;

• "v01" and other “v” – are analogous to the corresponding “u” lines with that difference that they use only increasing function variants for the
rhythmicity estimation. This makes them the more straightforward ones.

• "s01" and other “s” – are analogous to the corresponding “u” lines with that difference that they group syllables into groups of 6, not 5.
• "t01" and other “t” lines – are analogous to the corresponding “s” lines with that difference that they only use increasing function variants for

the rhythmicity estimation. This makes them the more straightforward ones.
• “S” line corresponds to the properties of the “s” line with the difference that the following function is used: i. e. rhythmicityPolyWeightedF2;
• “T” line corresponds to the properties of the “t” line with the difference that the following function is used: i. e. rhythmicityPolyWeightedF20;
• “U” line corresponds to the properties of the “u” line with the difference that the following function is used: i. e. rhythmicityPolyWeightedF2;
• “V” line corresponds to the properties of the “v” line with the difference that the following function is used: i. e.

rhythmicityPolyWeightedF20;
• “W” line corresponds to the properties of the “u” line with the difference that the following function is used: i. e. rhythmicityPolyWeightedF3;
• “X” line corresponds to the properties of the “v” line with the difference that the following function is used: i. e.

rhythmicityPolyWeightedF30;
• “Y” line corresponds to the properties of the “s” line with the difference that the following function is used: i. e. rhythmicityPolyWeightedF3;
• “Z” line corresponds to the properties of the “t” line with the difference that the following function is used: i. e. rhythmicityPolyWeightedF30;

The following property lines try to increase the significance of the text ending and decrease the significance of its beginning.
• “I” line corresponds to the properties of the “W” line with the difference that the following weighted function is used:

rhythmicityPolyWeightedEF2;
• “J” line corresponds to the properties of the “X” line with the difference that the following weighted function is used:

rhythmicityPolyWeightedEF20;
• “K” line corresponds to the properties of the “Y” line with the difference that the following weighted function is used:

rhythmicityPolyWeightedEF2;
• “L” line corresponds to the properties of the “Z” line with the difference that the following weighted function is used:

rhythmicityPolyWeightedEF20;
• “O” line corresponds to the properties of the “U” line with the difference that the following weighted function is used:

rhythmicityPolyWeightedEF3;
• “P” line corresponds to the properties of the “V” line with the difference that the following weighted function is used:

rhythmicityPolyWeightedEF30;

• “Q” line corresponds to the properties of the “S” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedEF3;

• “R” line corresponds to the properties of the “T” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedEF30;
Starting from the version 0.10.0.0 there are introduced also the following properties:

• “o” line corresponds to the properties of the “u” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF2;

• “p” line corresponds to the properties of the “v” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF20;

• “q” line corresponds to the properties of the “s” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF2;

• “r” line corresponds to the properties of the “t” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF20;

• “k” line corresponds to the properties of the “u” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF3;

• “l” line corresponds to the properties of the “v” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF30;

• “m” line corresponds to the properties of the “s” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF3;

• “n” line corresponds to the properties of the “t” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLF30;
The following lines try to increase the importance of the line ending and to decrease the importance of the its beginning.

• “g” line corresponds to the properties of the “u” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF2;

• “h” line corresponds to the properties of the “v” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF20;

• “i” line corresponds to the properties of the “s” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF2;

• “j” line corresponds to the properties of the “t” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF20;

• “b” line corresponds to the properties of the “u” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF3;

• “d” line corresponds to the properties of the “v” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF30;

• “e” line corresponds to the properties of the “s” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF3;
“f” line corresponds to the properties of the “t” line with the difference that the following weighted function is used:
rhythmicityPolyWeightedLEF30;

Custom configuration properties
If the property type starts with one of the “c”, “A”, “B”, “C”, “D”, “E”, “F”, “M”, “N” then the program tries to parse this property as a
encoded configuration of the polyrhythmicity. A mode for the developers and researchers, there can be used even more complex polyrhythmic
structures. For example, "c114+112=2" returns as a polyrhythm structure data P1 (Ch 1 1 4) (Rhythm 1 1 2) 2, that means that the 1 most
highlighted maximum, and 1 less highlighted maximum is searched in the groups of 4 syllables using syllableDurationsD2;
"ctttff7+112111=7*3" returns as a polyrhythm structure data P2 (PolyCh [True,True,True,False,False] 7) (PolyRhythm [1,1,2,1,1,1]) 7 3,
that means that the 1 most highlighted maximum, and 1 less highlighted maximum, and 2 even less highlighted maximae, and 1 even less
highlighted minimum, and 1 even less highlighted minimum in the groups of 7 syllables using the syllableDurationsD3 etc.
While using the new properties of the “A”, “B”, “C”, “D”, “E”, “F”, “M” and “N” lines there will be used ‘weighted’ functions (highly
experimental ones, though hopefully effective) that try to take into account also the significance of the place of the line part e. g. internally there
will be used such functions as rhythmicityPolyWeightedLEF2, rhythmicityPolyWeightedEF2, rhythmicityPolyWeightedF2,
rhythmicityPolyWeightedLF2, rhythmicityPolyWeightedLEF3, rhythmicityPolyWeightedLF3, rhythmicityPolyWeightedEF3 and
rhythmicityPolyWeightedF3 respectively, all from the module Rhythmicity.PolyRhythm.

Tip: If there are no results in the program output using multiple properties (an empty output), increase the number of
groups in properties (for at least one) and / or add interval transforms to change the internal structure of certain
properties.

The first argument
For the first time the program can be used without this argument, or by entering in its place 1_. You may want to in the future to deepen the analysis.
Then you can also specify the first argument (it is the first in the list of command line arguments, not counting the group - if available - between

arguments +a and -a) in the form number1_number2, where number1 and number2 - decimal positive fractions or positive integer numbers, and
one of them may be absent (then it is considered equal to 1). Example,
3.4_2
2.987_0.7865
0.0001_

etc.
The first number is a coefficient multiplied by the component of the property that is responsible for the rhythmicity of the two-syllables based verse
system, and the second – for rhythmicity of three-syllables based verse system. Accordingly, a successful combination can emphasize, combine or
eliminate, reduce the effect of rhythm for two-component or three-component based verse system.
In the absence of this argument, the programs behave as if it were equal to 1_1.

Constraints
When you run the lineVariantsG3 program you
can specify as command arguments constraints
string. They allow to reduce the number of
calculations, to consider only certain options (for
example, with a certain definite order of some
words, etc.) that allows you to actually expand
the program capabilities. These limitations are
encoded as command arguments line between
two special notation ‘brackets’ ‘+a’ and ‘-a’.
They form a group of arguments that can stand
anywhere in the input line data. Depending on
these arguments, the program asks or does not
ask an additional question for verification and
confirmation (that is called double check).
There are 6 types of constraints, they
can be arbitrarily combined, but with
respect to boundaries for each of them.
The figure shows that all types implemented with
one argument that is the same for all of them –
the number of words (or their combinations) in a
line. The user, having started the program, can no
longer adjust during its work this amount, but it
is important for limitations in general. None of
the digital characters in the constraints should be
greater than this number, also this number is not
more than 6 and not less than 0. Also a necessary
condition is that no numeric characters within
one encoded constraint cannot be repeated twice.
For example, the following constraints are

obviously not valid: Q2235 (repetition of digits), E2 (digital characters where they do not exist), T247 (7 is greater than 6), F0 (one character instead of

the required two), A37523 (7 is greater than 6), B5 (one symbol, and there must be other(s) one(s)). Incorrectly set constraints will either not affect the
result (although it will be expected otherwise), or will cause runtime exception and program shutdown. Since the result of their application is not
simple, so the program at its work displays a line to which the entered constraints will be applied with an additional question, whether all data are
entered correctly.
The types of costraints and their values are given in more detail in the table.

Restriction type Digital symbols The value of the constraint and its parameters

E Without entering additional
digital characters.

Corresponds to the absence of additional constraints, so does not affects the end result.

Q 4 pairs of unequal digits in range
from 0 to the number of words or
their comcatenations minus 1

Numbers are indices of 4 words or their concatenations, the mutual order of which during
the permutations will be saved as follows. Also, if these words are the same (excluding
uppercase and lowercase letters), then it is a convenient way to reduce the amount of data to
be analyzed.

T 3 pairs of unequal digits in range
from 0 to the number of words or
their concatenations minus 1

Numbers are indices of 3 words or their concatenations, the mutual order of which during
the permutations will be saved as follows. Also, if these words are the same (excluding
uppercase and lowercase letters), then it is a convenient way to reduce the amount of data to
be analyzed.

F 2 pairs of unequal digits in range
from 0 to the number of words or
their combinations minus 1

Numbers are indices of 2 words or their concatenations, the mutual order of which during
the permutations will be saved as follows. Also, if these words are the same (excluding
uppercase and lowercase letters), then it is a convenient way to reduce the amount of data to
be analyzed.

A 1 digit and a few more in pairs
unequal numbers (all among
themselves unequal) to the right
of it within

The first digit is the index of the element relative to which the placement of all other
elements is determined (words or their combinations); all other numbers on the right are
indices of the elements that should stand in the resulting permutations to the RIGHT of the
element with from the element with the index equal to the first digit.

B 1 digit and a few more in pairs
unequal numbers (all among
themselves unequal) to the right
of it within

The first digit is the index of the element relative to which the placement of all other
elements is determined (words or their combinations); all other numbers on the right are
indices of the elements that should stand in the resulting permutations to the LEFT of the
element with from the element with the index equal to the first digit.

Parallel execution of programs
Typically, all packet programs run on a single processor core. In this case, for all programs under consideration, there is an opportunity to enable multi-
core operation - parallel computing. To do this, the command line arguments must include the following:
+RTS -N -RTS

Their placement does not affect the order and value of other command line arguments, and there may be other RTS entries parameters. For more
information on these parameters, see the documentation [4].
We can only recommend these settings for the propertiesTextG3 program. For other programs, they are not recommended, although you can use
them (they will simply increase the use of resources).

Sources
1 Шевченко Т. Г. 'Садок вишневий коло хати...'. [Електронний ресурс]. Режим доступу: Sadok vyshnevyi kolo khaty. Retrieved: 09

листопада 2020 р.
2 Oleksandr Zhabenko. dobutokO-poetry. [Електронний ресурс]. Режим доступу: dobutokO-poetry: Helps to order the 7 or less Ukrainian

words to obtain somewhat suitable for poetry or music text. Retrieved: 09 листопада 2020 р.
3 Oleksandr Zhabenko. Haskell library phonetic-languages-rhythmicity.
4 Glasgow Haskell Compiler User's Guide. 7.5. Using SMP parallelism. [Електронний ресурс]. Режим доступу: https://downloads.haskell.org/

~ghc/latest/docs/html/users_guide/using-concurrent.html#using-smp-parallelism . Retrieved: 10 листопада 2020 р.
5 Ямбічна строфа // Енциклопедичний словник класичних мов / Л. Л. Звонська , Н. В. Корольова, О. В. Лазер-Паньків та ін.. — К. : ВПЦ

«Київський університет», 2017. — С. 551. — 552 с.
6 Смаглій Г. А. Теорія музики : Підруч. для навч. закл. освіти, культури і мистецтв / Г. А. Смаглій. — Х. : Вид-во 'Ранок', 2013. — 392 с.

ISBN 978-617-09-1294-7

Additional literature
7 Квантитативне віршування — Вікіпедія [Електронний ресурс]. Режим доступу: https://uk.wikipedia.org/wiki/%D0%9A

%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D1%82%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B5_

%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F. Retrieved: 12 листопада 2020 р.

8 Силабічне віршування — Вікіпедія [Електронний ресурс]. Режим доступу: https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB

%D0%B0%D0%B1%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD

%D0%BD%D1%8F. Retrieved: 12 листопада 2020 р.

https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D1%82%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D1%82%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D1%82%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%9A%D0%B2%D0%B0%D0%BD%D1%82%D0%B8%D1%82%D0%B0%D1%82%D0%B8%D0%B2%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%97%D0%B2%D0%BE%D0%BD%D1%81%D1%8C%D0%BA%D0%B0_%D0%9B%D0%B5%D1%81%D1%8F_%D0%9B%D0%B5%D0%BE%D0%BD%D1%96%D0%B4%D1%96%D0%B2%D0%BD%D0%B0
http://shron1.chtyvo.org.ua/Zvonska_Lesia/Entsyklopedychnyi_slovnyk_klasychnykh_mov.pdf#page=551
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/using-concurrent.html#using-smp-parallelism
https://downloads.haskell.org/~ghc/latest/docs/html/users_guide/using-concurrent.html#using-smp-parallelism
https://hackage.haskell.org/package/phonetic-languages-rhythmicity
https://hackage.haskell.org/package/dobutokO-poetry-0.8.1.0
https://hackage.haskell.org/package/dobutokO-poetry-0.8.1.0
http://poetyka.uazone.net/kobzar/sadok_vyshnevyi.html

9 Тонічне віршування — Вікіпедія [Електронний ресурс]. Режим доступу: https://uk.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BD

%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F.

Retrieved: 12 листопада 2020 р.

10 Силабо-тонічне віршування — Вікіпедія [Електронний ресурс]. Режим доступу:

https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D0%BE-%D1%82%D0%BE%D0%BD

%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F.

Retrieved: 12 листопада 2020 р.

11 Віршування — Вікіпедія [Електронний ресурс]. Режим доступу:

https://uk.wikipedia.org/wiki/%D0%92%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F. Retrieved:

12 листопада 2020 р.

12 Античне віршування — Вікіпедія [Електронний ресурс]. Режим доступу: https://uk.wikipedia.org/wiki/%D0%90%D0%BD

%D1%82%D0%B8%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD

%D1%8F. Retrieved: 12 листопада 2020 р.

13 Google Translate. [Електронний ресурс]. Режим доступу: https://translate.google.com/

https://translate.google.com/
https://uk.wikipedia.org/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%90%D0%BD%D1%82%D0%B8%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%92%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%92%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D0%BE-%D1%82%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D0%BE-%D1%82%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A1%D0%B8%D0%BB%D0%B0%D0%B1%D0%BE-%D1%82%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F
https://uk.wikipedia.org/wiki/%D0%A2%D0%BE%D0%BD%D1%96%D1%87%D0%BD%D0%B5_%D0%B2%D1%96%D1%80%D1%88%D1%83%D0%B2%D0%B0%D0%BD%D0%BD%D1%8F

	Introduction
	Polyrhythm as a Multi-Ordered Sequence Pattern
	Coherent States of Polyrhythmicity as One of the Essential Sources of Rhythmicity
	Rap Music Consequences
	Increasing and Decreasing Functions
	Prerequisites for using the software package
	Remark on terminology
	Installing the package

	Working with the program lineVariantsG3
	Ukrainian information messages
	More complex usage
	Parameter +l (+bl) and its usage
	Parameter +b (+bl) and its usage
	Multiple properties mode (+m ... -m)
	Interactive mode (+i) and its usage
	Interactive mode of writing a line to a file (+f ...)
	Mode of simultaneous possible variations of the text
	Recursive mode of the work (“+r”)
	WX argument
	Multiple sources usage mode

	Work with program unconcatUkr
	Working with propertiesTextG3 (and distributionTextG)
	Option I (lines only)
	Option II - statistics throughout the text (+ possibly lines)
	Statistics mode by multiple properties (+m ... -m)
	White String Mode
	Fixed-line statistics (+b)
	Control the number of intervals
	You can also control whether to print lines of the text
	Control the division of text into lines
	Whether to use ‘growing lines’ mode
	The same argument for the number of rows
	Whether to display serial data as well
	Selective analysis of text by lines

	Working with rewritePoemG3
	More complex usage
	Comparative mode of operation (+c)

	Types of properties
	The first argument
	Constraints
	Parallel execution of programs
	Sources
	Additional literature

