Brief instructions for using the programs of the package
phonetic-languages-simplified-examples-array

Oleksandr Zhabenko

August 24, 2021

Author and software developer: Oleksandr Zhabenko
License: MIT

Copyright (c) 2020-2021 Oleksandr Zhabenko

Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the
"Software”), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute,
sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following
conditions:

The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
IN THE SOFTWARE.

Introduction

There are different languages. They have different structure and rules. It is possible to create and use (based on one of existing widely
used and well-spoken languages, in particular Ukrainian in this work) a ‘phonetic’ language that is better suited for poetry and music. It is
even possible to create different versions of phonetic language. This paper proposes to create several different phonetic languages based
on Ukrainian.

Imagine that you can understand the information in the text regardless of the order of the words and preserve only the most necessary
grammar (for example, the rule does not separate the preposition and the next word is preserved). Understand just like reading a text (after
some learning and training, perhaps), in which only the first and last letters are preserved in words in their positions, and all the others are
mutually mixed with each other. So imagine that you can understand (and express your thoughts, feelings, motives, etc.) the message of
the text without adherence to strict word order. In this case, you can organize the words (keeping the most necessary grammar to reduce
or eliminate possible ambiguity due to grammar, or rather a decrease in its volume), placing them so that they provide a more interesting
phonetic sounding. You can try to create poetic (or at least a little more rhythmic and expressive) text or music.

It can also be an inspiring developmental exercise in itself. But how could you quickly find out which combinations are more or less
fit? Also, can the complexity of the algorithms be reduced?

These are just some of the interesting questions. This work does not currently provide a complete answer to them, but is experimental
one and a research, and any result of it is valuable.

Ukrainian is a language without strict requirements for word order in a sentence (although there are some established preferred options)
and has a pleasant sounding. So, it can be a good example and instance. In addition, it is a native language for the author of the programs.
Even if you don’t want to create and use ‘phonetic’ languages where phonetics is more important than grammar, then you can assess the
phonetic potential of the words used in the text to produce specially sounded texts. It can also be valuable and helpful in writing poetry
and possible other related fields [11].

4

Polyrhythm as a Multi-Ordered Sequence Pattern

Let us have some sequence organized in the following way. Let us implement (generally speaking a conditional one) division of the
sequence into compact single-connected subgroups with the same number of elements each in the subgroup, which actually means that
we split the sequence into a sequence of subsequences with the same number of elements in each. Consider the internal ordering of each
subsequence from the perspective of the placement of the values of its elements and repeatability of the some patterns of the placement
of the elements. We assume that the elements can be compared in relation of order, that is, they are the elements of the data type that
has an implemented instance of the class Ord.

Considering that the elements of the subsequences may be pairwise different (or in some cases equal), we will compare the positions

on which the subgroups of elements that have a higher degree of relatedness (“closeness”, "similarity”) in value and order are located.
Denote such subgroups by indices that have in the module code mostly a letter designation.

Then each subsequence will consist of the same number of elements of one nature (in particular, numbers of the type Double), in
each subsequence there will be selected several subgroups of "similar” elements in value (and order, if the subsequences are sorted by
the value), each of which will have its own index as a symbol (most often in the code - the characters). Subgroups must have (actually
approximately) the same number of elements (in the code it is not strictly used for simplification of the former one, but it is so in the vast
majority of cases because of the excessive "accuracy” of numbers of type Double that are used). Consider the question of positions in
the subsequences of the corresponding subgroups in case of they have been belonging to different subsequences.

To assess this, we introduce certain numerical functions that have regular behavior and allow us to determine whether the subse-
quences actually have elements that belong to the relevant corresponding subgroups in the same places, or on different ones. It can be
shown that the situation "on different ones” corresponds to the presence of several rhythmimc patterns - for each subgroup will be their
own, which do not mutually match, at the same time the ideal situation "completely in the same places” corresponds to the case when
these rhythms are consistent with each other, as is the case of coherence in quantum physics, in particular spatial and temporal coher-
ence, which is important in particular for understanding of lasers and masers. Polyrhythms consisting of such rhythms, which cohere with
each other, form a more noticeable overall rhythm, as well as the presence of coherence in the radiation leads to a more structured latter
one [12].

Coherent States of Polyrhythmicity as One of the Essential Sources of Rhythmicity

The described pattern of rhythmicity is one of the significant possible options for the formation of rhythmicity in particular in lyrics or music,
but not the only one. It should be noted that the described mechanism of rhythm formation, as is noticed in the statistical experiments
with texts using this code (the code of the library and its dependent packages on the Hackage site) may not be the only possible option,
but in many cases it is crucial and influences the course of the rhythmization process (formation, change or disappearance of the rhythm).
It is also known that the presence of the statistical relationship does not mean the existence of deeper connections between phenomena,
in particular — the causality. "Correlation does not mean causality.” A deeper connection implies the presence of other than the statistical
ones to confirm it.

Rap Music Consequences

The code of the library allows in practice to obtain rhythmic patterns that are often close to the lyrics in rap style. Therefore, this can be
attributed to one of the direct applications of the library.[12]

Increasing and Decreasing Functions

Since the 0.5.3.0 version of the phonetic-languages-rhythmicity package the increasing and decreasing functions for the polyrhythmicity
evaluation have become more similar to be more likewise the inverse one to another. This leads to that fact that these functions now are
expected to be smoother for usage for the beginning of the line, its middle and its ending.

Note: since the 0.6.0.0 version of the phonetic-languages-rhythmicity package the values of the properties from the series “c”, "s”, “t”,
“u”, “v" and the many others (starting from the 0.9.0.0 version) can be negative by sign. This does not influence the logics of the working
library functions and programs. Since the 0.8.0.0 version of the package phonetic-languages-simplified-examples-array there were added
also new properties that can be negative by sign.

See also: [7,10,2, 3, 4, 6,1, 5]

Prerequisites for using the software package

At the moment, the programs work for workstations (desktops e. g.), and there are no mobile versions.
You must have Haskell applications installed and configured:

1. GHC (versions not earlier than 7.10)
2. Cabal

The executables of these programs must be searchable through the PATH workspace variable (this is the default setting).

If possible, use the system package manager (programs) to install also important packages Haskell bytestring, vector, heaps, parallel.
If you also plan to use r-glpk-phonetic-languages-ukrainian-durations, then also install and set the programming language (and better
development environment) R.

If the required Haskell packages are not installed using the system manager, they will be installed when installing the packages (down-
loaded and installed automatically, with additional time also spent on their compilation).

Remark on terminology

Earlier versions of the packages used the names ‘norms’ and ‘metrices’ for the properties of the texts. Because in the sense typical of
mathematics (including functional analysis) all these properties are not actually metrices and norms (e. g. the inequality of the triangle is
not fulfilled), then the non-ambiguous ‘property’ will be used everywhere instead.

‘Property’ hereafter means the functional representation of the latter.

7

https://downloads.haskell.org/ghc/latest/docs/html/users_guide/
https://www.haskell.org/cabal/
https://cran.r-project.org

8

Installing the package

Open a command prompt or terminal and enter as commands:

cabal update
cabal --reinstall install phonetic-languages-plus
cabal --reinstall --force-reinstalls install phonetic-languages-simplified-examples-array

It is also recommended to install the following packages:

cabal --reinstall --force-reinstalls install r-glpk-phonetic-languages-ukrainian-durations
cabal --reinstall --force-reinstalls install mmsyn6ukr-array

The latter is optional, but useful for sound and does not take a lot of space.
If there are messages about outdated command variants, enter instead of update - v1-update, install - v1-install.

Working with the program lineVariantsG3

Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment
variable.
The program now supports two modes:

+ with one property (normal mode);

- with several (not more than five different) properties.

The latter is used if the command line arguments include a group entered by delimiters +m <property type1> <numeric arguments1>
<property type2> <numeric arguments2> <property type3> <numeric arguments3> <property type4> <numeric arguments4> <property
type5> <numeric arguments5> -m.

More about this at relevant section (see link above). The operation of the program in this mode is described later in a separate section.

To work in the single property mode, enter the command at the command prompt (or terminal):

lineVariantsG3 <the first argument> [<WX argument> <whether to print property value(s)>
<whether to fix the last word> <stay in place> <whether to use recursive interactive mode>]
<numerical arguments> < property type> <Ukrainian text>

everything here and further in the single line or using the terminal line hyphenation, or:

lineVariantsG3 <the first argument> [<WX argument> <whether to print property value(s)>
<whether to fix the last word> <stay in place > <whether to use recursive
interactive mode>] <numeric arguments > <property type > <Ukrainian text>
<somewhere in the middle arguments as a single group: restrictions>

9

10

and press Enter. Additionally, you can set the interactive mode, about what see below for more details .
If you don't specify groups in square brackets, you'll see something like this:

lineVariantsG3 10.0 1.2 yy2 capoK BWUWHEBWA KOMO XaTU Xpywi Hag BUWHAMKM TyayTb

(Ukrainian text entered in the end of the command line arguments - an excerpt from a famous poem by Taras Shevchenko; in general
this line is the entered command). Here and further is cited by: [8]

CafoK KomoxaTu Xpywi ryayTb HagBWWHAMW BUWHEBWW

(in general, there may be several such variants that form one group, as well as several such groups; all groups follow one another from
top to bottom in descending order of the final value of the property, which maximizes the selected property for given intervals)

[3.6562] (value of selected property before applying interval conversion)
[3.6562] (the value of the selected property after the interval conversion, the final
value of the property for this line).

Note that the text may (and probably will not) be written the way it is spelled according to spelling and punctuation rules, but you can
read it and try to understand. By modifying the first arguments entered, you will (most likely) get other output, the same obviously, it also
applies to the Ukrainian text. Too long text will be reduced to a volume that you could understand (perhaps after previously mentioned
training) without effort.

Try to evaluate by reading the variant how it is suitable.

NOTE: Also keep in mind that in single property mode, numeric arguments precede the notation of a property, and in the case of
multiple properties (see below) on the contrary - the designation of the property begins a set of numerical arguments that relate to it, if
any (otherwise default values are used, which are just the same to the search for the maximum element).

Ukrainian information messages

In order for the program to display informational messages in Ukrainian (it displays in English by default), it is required to specify ‘+u’ as
one of the command line arguments somewhere outside the option groups, for example, at the beginning. You can also customize the
alias for this version of the program, as for other options, if you like. Refer to the documentation for details command shells.

11

More complex usage

Numeric arguments, if specified, have the following meaning.

The first numeric argument is the number of groups with the same maximum property value (in descending order) that will be output
on the screen as a result. If you specify a larger number than there is at all, then all possible results are displayed that satisfy all other
conditions. If no numeric arguments are specified, it is considered equal to 1.

The second numeric argument is the number of intervals into which the interval between the minimum and maximum value of the
property for this line. If not specified, it is considered equal to 1. A value of 0 does not allow other numeric arguments to further change
the result of the work of the program.

All subsequent numeric arguments (if specified, otherwise no permutations occur) are interval numbers that will be swapped with the
maximum number. This allows you to change the structure of the data that is displayed as a result of the program and see the internal
(not maximum) items. For example, the numeric arguments 2 6 1 4 (in this order) will mean that during execution the program will return
2 groups of elements with the maximum values of the property (the largest and the next largest ones) obtained after permutations of the
intervals; the interval between the maximum and minimum value of the property will be divided into 6 equal intervals, thus elements that
are in the first and fourth, counting from the minimum (interval number 1) will be moved to the largest one; the command will display 2
groups of elements. Values that were in the maximum interval will be moved to the interval with the lowest number among those that are
moved to the maximum one. Thus, at an output these values will be deduced at the latest.

Parameter +l (+bl) and its usage

NOTE: If there were no +|, +bl, +i, +y ... command line arguments, then each output block will have 2 numbers in square brackets displayed
- the initial value of the property (without moving the intervals) and the value after moving. If there was (at least) one of these (groups) of
characters - the value of the properties will not be printed.

It should also be remembered that:

+bl==+b +|

(this is just a reduction in the use of both parameters at once, instead of 5 characters you only need to enter 3).

If you also specify +f ... or +i, then this parameter may not be specified (it will be applied automatically), instead, if you want, you can
specify an additional +b instead.

12

Parameter +b (+bl) and its usage

If somewhere among the arguments of the command line specify an argument in the form of +b (or +bl), the program will preserve, when
outputting and analyzing, the last word in the line in its place - it is very convenient when you need, having a rhyme, to pick up other words.
If not specified, then all words will be moved (if necessary). The operation of the parameter is actually implemented as an additional
constraint, see the following sections. You can also set additional constraints.

+bl==+b +|

(this is just a reduction in the use of both parameters at once, instead of 5 characters you only need to enter 3).

About the use of other parameters a little later.

Multiple properties mode (+m ...-m)

If you specify a group of arguments selected by the +m and -m delimiters from the command line arguments so that the argument group is
selected +a and -a delimiters were not inside this, and vice versa (so that they do not intersect), then the program will work in the multiple
properties mode. The values of the properties will not be displayed on the screen, instead it is possible to set no more than four different
properties and to each of them to specify arguments (see: More complex usage). The program will then find variants that meet each
of these conditions, and then display only those variants that are found in all selected and given properties with parameters. Numerical
arguments that stand after the property designation and precede the next denote a property related to that property. If numeric arguments
are omitted, the default values are used (in fact, this is equivalent to simply searching for maximum property values).

In general, this is the more comprehensive use of this program.

Try, for example, to specify:

lineVariantsG3+m 02y 3 03y 3 y0 10 -m +bl <Ukrainian text>.

Interactive mode (+i) and its usage

Interactive mode (additional extended user interaction, in addition to the required) is enabled and set accordingly by the command line
argument +i, which can be placed anywhere in the command line. In this case, the program displays not just lines that satisfy all conditions,

13

but for each line also displays its sequence number (starting with 1) in order of increasing the ‘weakness’ of all conditions (the higher the
number in the general case, the more likely the weaker effect is of given conditions, although this is not always the case - in particular
when you need to withdraw only one group). The program then asks what the choice is waits for the option number entered by the user.
Then returns that option without a number.

It looks something like this:

lineVariantsG3 +i +m 02y 10 Oy 10 y0 50 y2 40 -m capoK BMWWHEBWUW KOSIO XaTW Xpywi Hap
BUWHAMN TyoyTb

Please, check whether the line below corresponds and is consistent with the

constraints you have specified between the +a and -a options. Check also whether

you have specified the "+b” or "+bl” option(s). If it is inconsistent then enter

further "n”, press Enter and then run the program again with better arguments. If

the line is consistent with your input between +a and -a then just press Enter

to proceed further.

CafoK BUWHEBMM KONMOXATW Xpyli HagBUWHAMM TYOYTb

BUWHEBMN KONMOXAaTW Xpyli HagBUWHSMM CAafoK TFyayThb
BUWHEBMUN KONMOXATW CafoK Xpylli HagBUWHAMKM TyOyThb
BUWHEBMUN KONOXATW XpylWi CapoK HaABUWHAMKW TYOYyThb
BUWHEBUMA CafOK KOJOXaTW Xpyllli HagBUWHAMM TFyayThb
KO/TOXaTW BUWHEBWUMA HAABUWHAMM CagoOK Xpyui rygyTb
Xpylli cafpok BUWHEBWUM KOMOXATW HAOBUWHSAMU FyAyTb
KONoOXaTu XpylWi cafgok BUWHEBUW HAABUWHAMUM TYOYyTb
Xpyli KonoxaTu CafoK BUWHEBUN HaABUWHAMM TYOYyTb
Xpyli cafgokK KONoXaTu BUWHEBUN HaABUWHAMM TYOYTb
10 xpyui HagBWWHAMM CafOK BUWHEBUW KOMOXaTW FyayThb
11 KonoxaTu Xpylli HagBWUWHAMM CafOK BUIWHEBUWA TFyAyThb
12 HagBUIWHAMKM KONOXaTW XPYlWi CagoK BUIWHEBWUWA TYOYyThb
13 HaOBUIWHAMKW CAfOK KONOXAaTW XpylWi BUIWHEBWUA TyOyThb

OCoo~NOUTEWNBRE

14

Please, specify the variant which you would like to become the resulting string by its
number.

4

BUIWHEBUN CafOK KONOXaTW Xpylui HagBUWHAMM TYOYTb

Interactive mode of writing a line to a file (+f ...)

If you specify a group of three arguments as +f <path to record file>, then in the specified path to the text file specified, if possible, the final
result of the program will be appended, except that it will be displayed as in the usual interactive mode on the screen. This command line
arguments group can be anywhere between the command line arguments of the program call, but should not be contained inside other
arguments of the form +a ... -a, +m ... -m, etc.

The result can be something like this:

lineVariantsG3 +f hello.txt +bl +m 02y 10 Oy 10 y0 50 y2 40 -m CapOK BUWHEBUW KOO XaTu
XpylWwi Hapg BUWHAMM TYyayTb

Please, check whether the line below corresponds and is consistent with the constraints

you have specified between the +a and -a options. Check also whether you have specified

the "+b” or "+bl” option(s). If it is inconsistent then enter further "n”, press Enter

and then run the program again with better arguments. If the line is consistent with

your input between +a and -a then just press Enter to proceed further.

CafloOK BUWHEBWUN KOMOXATW XpylWi HagBUWHAMKM TyayTb

BUWHEBMUN KONMOXATW XpylWi HagBUWHSMM CAQOK TyayThb
BUWHEBUN KONOXATW CafoK Xpyli HagBUWHAMKM TyOyThb
BUWHEBWUMA KONOXaTW Xpylll CapoK HagBUWHAMM TyAyThb
BUWHEBUMA CafOK KOJOXaTW Xpyllli HagBUWHAMM TyayThb
BUWHEBUN CafoOK Xpylli HaOBUIWHAMKW KONOXaTW TyayThb
Xpyli cafgok BUWHEBUN KONMOXATU HaABUWHAMM TYyOYyThb
CafloK Xpyui BUWHEBWUA HAOBUIWHAMKU KONMOXaTWU TyayThb

NouhksWNBRE

15

8 KonoxatTu Xpywi cagok BUWHEBUM HaOBUWHAMU TyOyTb
9 HaOBMUWHSAMM KONOXATU Xpyli BUWHEBUN CafoK ryayThb
10 xpyuwi KonoxaTuW CagoOK BWWHEBWUWA HAOBMWWHAMM TFYOyThb
11 xpyuwi capok KOMOXaTW BUWHEBWUA HAABUWHAMU TFYAYThb
12 xpywi HagBMWHAMM CagoOK BUWHEBMW KOMOXaTu FyayThb
13 KonoxaTu HaQBMWHAMM CaQoOK Xpylli BUWHEBMW TFyayThb
14 KonoxaTu Xpyili HagBUWHAMM CaQOK BUWHEBUW TFyayThb
15 KonoxaTu Xpylli CagoOK HagBWWHAMM BUWHEBUW TFyayThb
16 HapgBWWHAMM KOMOXaTW CafgoOK Xpylli BUWHEBUW TFyayThb
17 HapBMWHAMM KOMOXaTW Xpylll CapoOK BUWHEBMW TFyayThb
18 xpyuwi KonoxaTuW HagBWWHAMM CaQOK BUWHEBUW TFyayThb
19 xpywi KonoxaTuW CagOK HagBWWHAMM BUWHEBWUW TFyayThb
20 HaOBUWHSMKU CafOK KONOXaTW Xpylwi BUWHEBWIA TydyTb
21 capoK HaOBUWHSAMU KONMOXATW XpylWi BUWHEBWA TydyTb
22 Xpywi HagBWUWHSMM KONOXaTW CadoOK BUWHEBWWA TyoyTb
23 HaOBMWHSIMM CafoK Xpylwi KonoxaTu BUWHEBWWA TydyTb
24 Xxpywi HagBWUWHSMKM CaloOK KONOXaTW BUWHEBWUA TydyTb
25 capok Xpywi HagBUWHSMKU KONOXATW BUWIHEBWUWA TYOyTb

Please, specify the variant which you would like to become the resulting
string by its number.

4

BUWHEBUN CafOK KOMOXaTW Xpyuwi HagBUWHAMM FYAYyTb

This end line in the program output will also be appended to the file with the specified name, if possible for this user.

If you wish, you can run the command again with new text and / or new arguments. If similarly the same file is specified, then the
new result will be appended further to the same file. This makes it possible to apply this program consistently, write or rewrite texts (e.g.
poems).

16

Mode of simultaneous possible variations of the text

Starting with version 0.3.0.0, the ability to process several variations of text at once has been added, in particular those that deals with
synonyms, paraphrases, etc.
To do this, use the following special construction instead of plain text as extreme arguments:

{<variantl of the Ukrainian text> / <variant2 of the Ukrainian text> / ... /
<variantN of the Ukrainian text>}

everything at the single line with at least two variants inside curly braces. These options will be worked out in turn each in particular
during one call of the program, and you will select one of the variants (possibly the empty one). In the end there will be an opportunity to
choose among these pre-prepared versions of the only one, single final variant, which will be the result (and accordingly, for example, will
be displayed and written to a file if provided by command line arguments).

Please note that the program in this mode provides processing of each of the possible combinations of variations, and therefore, if
you specify too many of them (for example, 3 variations on one word and 4 on another will create 3 * 4 = 12 variations which will be
consecutively processed) the execution time of the program can be longer than expected until you get the final result.

Recursive mode of the work (“+r")

Starting from the version 0.9.0.0 you can execute the program in the recursive interactive mode. For this, you need to run the command
with the parameter “+r”, e. g. at the beginning after the first argument. In such a case the program will be executed recursively, proposing
to end the recursion on every step. The result of the last step will be the overall result of the program execution.

This mode is incompatible with constraints (because the constraints do not have the proper expected meaning and begin to ‘shift’ from
the needed parts of the text to the other ones), that is why they should not be used simultaneously, this mode can be the alternative to the
latter ones. While execution in the recursive mode there is no possibility to change the call parameters for the properties etc., therefore,
choose them wisely.

The text changes in this mode are specified by the so called ‘interpreter string’, i. e. the textual input that in the arithmetic expression
— either in a number or division expression encodes the following actions of the program.

17

« If on the interpreter string the two-digit number is entered then the first digit the program tries to interpret as an index of the first
word (starting counting from 1) to which the change is applied, the second digit is interpreted as a number of the words that are
concatenated further including the first specified one. Afterwards, the program (if it is possible to do so without an error) works with
the newly generated text. For example, the “12” means that the program will concatenate the first word (digit “1”) with the following
ones in the quantity of 2 together (digit “2”) this leads to concatenation of the first two words. “34” means that the program tries to
concatenate consequently 4 words starting from the third one. If it is impossible the program will execute the previous stage again
with prompt to input the interpreter string again.

« If the three- or multi-digit number is specified then all the digits that are not equal to 0 the program tries to interpret as the indices of
the words that are needed to be concatenated in the order of the digits written down in the interpreter string.

- AIf the digit (greater than 0 and not greater than the number of words on the line) precedes the '/’ and then is followed by digits. Then
the first digit before the /' sign means the index of the words (counting starts from 1) that is splitted into 2 parts, the second digit
is the number of the symbols that the program counts from the beginning of the word to split it into two parts (just as the standard
function ‘splitAt’ works). Then the program, if the specified string was successfully interpreted in such a way, will split the specified
word into two parts (one of which can be an empty string) and will work with the text in which the specified word is substituted with
these two new words (or just the first of them, if they are not empty and the number of the words in the line is already equal to 7 at
the moment of splitting). For example, the interpreter string “1/5” will split the “cagokBuwiHeBunit” if it is the first word in the text into

~ n

“capok BuwWwHeBwin” (counting from the beginning the 5 symbols) and will work with the new text further.

WX argument
If among properties you use “w” or “X” series (or both ones) then you can specify for them another argument that must begin with “+x” with
the next written down two positive Double numbers connected by the “symbol (underlinesymbol). Forexample, +x2.345_0.45676237876.1 fthisargu
x2.0_0.125isused.

The first number is used as a factor (multiplier or divisor in case of non-suitability) and it mostly influences the property value, it deals
with the most important syllables in the rhythmic group; on the other hand, the second one is used either just for increasing of the property
value if the less highlighted syllable durations in the rhythmic group (corresponds to ‘W’ series) or also for more complex behaviour (‘x’
series).

18

More details can be found in the section Types of properties.

Working with propertiesTextG3 (and distributionTextG)

Option | (lines only)

Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment
variable.
Then enter the command at the command prompt (or terminal):

propertiesTextG3 <the first argument> [<WX argument>] [<whether to use
‘growing lines’>] <file with Ukrainian text> <control of the number
of intervals> <control whether to print also text string> <control the
division of text into lines> <property type>

and press Enter.
You will see something like:

propertiesTextG3 2.1 3.0 ~/sadok.txt s 1 0 04z

5

2 211 1.0000 5.6200 5.6200 0.30211480 2 1 Tapac WEBYEHKO

Bka3zemarti

81 83 227 1.0222 2.7902 2.7297 0.53936831 3 1 CapgokK BMUWHEBWUM KONOXaTH
4 10 10 2.2936 2.2936 1.0000 1.39275766 3 5 Xpywi HagBUWHAMU TyoyTb

19

20

0 4 7 16.4444 26.2400 1.5957 1.20737478 3 4 Nnyratapi 3nnyramm unpyTb
36 81 82 2.2345 2.2621 1.0123 1.36997886 3 5 CniBawTb iay4yu giB4yaTa
4 4 16 1.1111 4.0625 3.6562 0.43895748 3 1 AMaTepli BeyepATb XAYTb

81 144 146 1.7778 1.7942 1.0092 1.27248256 3 5 CeM’'sa Beueps Kosi0XaTwu
59 16 1.8000 3.2000 1.7778 0.85714286 3 2 BeuyipHf 31poHbKa BCTaE€

1 99 8.7059 8.7059 1.0000 1.79393939 3 5 [loyka Be4yepATb MOOAE

36 146 147 4.0625 4.0711 1.0021 1.60221297 3 5 AMaTu Xxo4ye HayyaTtu

0 4 14 9.0000 32.0400 3.5600 0.54479419 3 2 Tak CONOBENKO Hepae

81 82 145 1.0014 1.7804 1.7778 0.72037537 3 1 lNoknana Matu KOJNOXaTu
4 4 10 1.0625 2.3906 2.2500 0.62672811 3 1 ManeHbKMX pJ1TOYOK CBOIX
45 16 1.2162 3.9527 3.2500 0.49113233 3 1 Cama 3acCHyna KOJonix

36 36 91 1.0038 2.5266 2.5170 0.56929225 4 1 3atuxno BCe TiNbKO fAiBYaTa
004 1.0000 9.0000 9.0000 0.20000000 2 1 Taco/oBEMKO He3aTUX
MixiTpaBH#

C-NeTepbypr

Numeric columns have the same value for both options. The difference is that in the second case the statistics on the whole text is
more important from the point of view of the researcher than for each line in particular.

Column | is the minimum possible value of the selected property for the given data among all possible variants of permutations of
words in line;

Column Il is the actual value of the selected property for the specified data in the row, the one that is implemented in this particular
version of the row;

Column Il is the maximum possible value of the selected property for the given data among all possible variants of word permutations
in line;

Column 1V is the ratio of the value of the property for a given row and its minimum value for the words that make up the row; a numeric,
which is not less than 1.0;

Column V is the ratio of the maximum value of the property for the words of this line and its minimum value, which consists of line; a
number that is not less than 1.0 and not less than the number in column IV;

Column Vl is the ratio of the maximum value of a property for a given row and its actual value; a number that is not less than 1.0 and
not greater than the value in the V column;

21

Column VIl is the ratio of the actual value of the property to the arithmetic mean (half-sum) of the maximum and minimum values for
all possible permutations of words for a given data; a number that is displayed with the full calculated number of characters after dots; is
important for further statistics for the whole text;

Column VIl is the number of words in a line, some of which may consist of several connected Ukrainian words;

Column IX is the number of the interval (starting with 1), which includes the actual value of the property for the specified data;

Further to the right - if <control whether to print also a line of text> as ‘1’, then a line of text that is being analyzed is displayed here;
otherwise, it is not displayed.

Option Il - statistics throughout the text (+ possibly lines)

Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment
variable.
Then enter the command in the terminal:

propertiesTextG3 <the first argument> [<WX argument>] [<whether to use
‘growing lines’>] <file with Ukrainian text> <control of the number of
intervals> <control whether to print also text string> <control the
division of text into lines > <property type> | distributionTextG
<same row argument> <whether also display ordinal data>

and press Enter. In Unix-like operating systems, the vertical line (highlighted in red) is used to create pipelines in the shell terminal; for
Windows:

PowerShell -Command "propertiesTextG3 <the first argument> [<WX argument>]
[<whether to use ‘growing lines’>] <file with Ukrainian text> <quantity
control intervals> <control whether to print also text string> <control
the division of text into lines> <property type> | distributionTextG
< same row argument > <or also display ordinal data >’

You will see something like:

22

propertiesTextG3 2.1 3.0 ~/sadok.txt s 1 0 02y | distributionTextG s 1 +W

3

108

108

108

108

108

0.9098+-0.5590

2

4
3 5
BkazemarTi
108 142
34 34
25 25
109 110
4 34
245 245
34 34
25 89
277 277
3 13
142 245
3 25
12 25
29 242
4 12
MixiTpaBHSA

C-NeTepbypr

13

1

1.0000

.0000
.5180
. 1680
.0049
.0000
. 2694
1.1680
. 1680
.5611
.0000
.3111
.0000
.0000
.0778
.0000

PR RARRERNOORNKRERFOWOMH

0

1.7000

.3111
.5180
. 1680
.0194
.5180
. 2694
11.1680
29.6720
.5611
.3111
.2694
. 1680
. 1680
. 9778
.0508

N OO — 00 0

WOOWOONIN

0

1.

WONOOKRKRMAHWHEMEO®OM RH R

0

7000

.3111
.0000
.0000
.0145
.5180
.0000
.0000
.6327
.0000
.3111
. 7309
. 1680
.0420
.3299
.0508

0.

[oNoNoNoNoNoN _NoN DN NoNoN il i o

74074074

.86538462
. 78987107
.78184991
.99518569
.21012893
.38827528
.83563445
.53260303
.43837754
.37656904
.80203908
.21815009
.87260035
.21603563
.49372385

2

NPPWWWWWWWWWWWWW

1

HRNHRRERDMBADMRNDDAR

Tapac WEBYEHKO

CapoK BUWHEBUWA KOSOXaTu
Xpywi HagBUWHAMM ryayThb
Mnyratapi 3nanyramuv noyThb
CnigawTb igy4yu gis4yaTta
AMaTepi BeyepATb XOYTb
CeM’'a Beyepa KoOnoxaTtu
BeyipHa 3ipoHbKa BCTaE
[louka BeyepATb NOpae
AMaTu xoye Hay4aTwu

Tak CoNnoBenKO Hepae
Moknana MaTU KonoxaTtwu
ManeHbKUX OiTOYOK CBOIX
Cama 3acHyna Konouix

3aTuUXxs0 BCe TiNMbKO AiBYaTa

TacosloBerMKo He3aTux

>k 5k 3k >k 3k 5k 5k >k 3k 3k 5k 3k >k 3k 5k 5k >k 3k 3k 5k >k >k 3k 5k 3k >k 3k 5k 5k >k >k 3k 5k 3k >k 3k 5k 3k >k >k 5k 5k >k >k 3k 5k 5k >k 3k 5k 5k >k >k 5k 5k >k >k >k 5k 5k >k >k 5k 5k >k >k >k 5k >k >k >k 5k 5k >k >k 3k 5k >k >k >k 5k >k >k ki ki ok ki k ke

= O N

23

o s s s o P P s s s P P P P s s

OO OHHON

OO OONO
[cNoNoNoNOoNO)
[oNoNoNoNNo

There will be no color highlighting, just different types of statistics are grouped here (see the table below for semantics).

1. Red colour — Decimal fraction with error — The arithmetic mean (mathematical expectation) of all numbers in column VII statistics

for rows, plus or minus standard quadratic deviation; in the case of the selected properties “y0” - often a number close to 1.0; may
contain a rounding error caused by finding the sum of humbers with floating point. In case all lines of text excluded from the analysis
(see: explanation for orange) only one line of text - signal inscription is displayed instead of matrices and further information:

"1,000+-0,000!",

where " means a tab character. This label means that the specified text is not suitable for program analysis as well as that any data
that is gotten during the execution of the program (could be derived from this text and related texts) should be analyzed as follows,
so as not to refute the conclusions made on based on the whole set of texts. Simlply speaking, in this case, you can not take into
account the text, because with the right approach to the analysis and interpretation of data it should not break the results.

. Blue colour — Natural numbers — Row distribution matrix by number of words and intervals; matrix element in the k-th row and j-th

column - the number of rows for which the value of the selected property with the specified data falls in the interval with the number
j (numbering starts with 1), which is equal to matrix column number, and contains in the line k words (words or combinations thereof
that are displayed merged to comply with minimum grammar rules in data analysis and output), the number k is in the range between

24

2 and 7 inclusive (rows that are analyzed for the matrix contain from 2 to 7 words (or written together their concatenations)). Thus,
the matrix always has 6 rows, and the number of columns will depend on entered and available data. In fact, this matrix replaces
the graphical two-dimensional data distribution. It is displayed twice, one after the other delimited by tildes. In the first case zero
values are not displayed, instead there are dots. This is an element of data visualization, which allows you to better ‘see’ how
a distribution looks like where numeric values correspond to the ‘height’ on the distribution graph (the value of the discrete two-
dimensional function distribution). In the second case in place of dots there are the corresponding values, which are all equal to 0.
Data for the matrix are obtained from VIIl and IX columns of statistics by rows.

. Orange colour — Non-negative integers — Total number of rows. The first number on the left is the number of rows that are excluded

from the analysis for the matrix, because they have little data (1 or less words). Equality 0 means that all lines displayed on the
screen participate in the analysis for formation of a distribution matrix. Number on the right - the total number of lines in the text
that are displayed and analyzed (including those rows that are listed on the left).

. Green colour — Percents — Distribution of the total number of rows by intervals. The sum of percentage values naturally equal to

100%. Interval numbers inscribed above the corresponding percentage values. For example, the inscription in these three lines type:
12

1015

40% 60%

means that of the total number of rows, which can be analyzed using the program (contain enough data), 40% is accounted for by the
first interval (with a smaller value properties), and 60% - by the second one (according to greater value of the property). That is such
lines 10 and 15, respectively. All intervals are equal in size, but can have different numbers of rows. This is a simple one-dimensional
distribution, it is possible to build a histogram.

. Yellow colour — Natural numbers — Interval numbers. The countdown begins with 1. Further below they correspond to the number

of lines, values of the properties for which according to the data falls into the corresponding number interval.

. Brown colour — Natural numbers — Number of words in lines. Lies within 2 up to 7 inclusive (if there are less words, then the line

gets a value of 1.0 and is removed from analysis program for the matrix). Under them - the corresponding values of the number of
such lines. 0 corresponds to the case of the absence of lines with the number of words (or concatenations that are displayed as one
word).

25

Careful study of these data allows us to draw certain conclusions about the text, their totality, the model and language itself.

Statistics mode by multiple properties (+m ... -m)

Now, as for the program lineVariantsG3, you can use the mode of multiple properties. To do this, instead of one property it is possible to
specify multiple ones in the block selected by delimiters +m ... -m.
In this case, the program will display something like:

propertiesTextG3 sadok.txt s 1 0 +m y0 Oy 02y 03y y2 y3 yyy -m
2 4 2 1 2 4 4 1 Tapac WEBYEHKO

BkazemaTi

CapoK BUWHEBWUW KOJIOXATH
Xpywi HagBUWHSMM TYAYTb
MnyraTtapi 3nnyramum noyThb
CniBawTb igy4yu giB4yaTa
AMaTepi Be4yepaATb XOAYTb
CeM’'a Beuyeps Konoxatu
BeuipHs 3ipoHbKa BCTaE€
[louka BeyepATb NOpae

AMaTK Xo4ye Hay4aTu

Tak conoBenko Hepae
Moknana MaTU KonoxaTwu
ManeHbKMX OiTOYOK CBOIX
CamMa 3acHyna Konomix
3aTuUXN0 BCe TiNbKO AiBYaTa
TaconoBenko He3aTux
MixiTpaBH4

C-NMetepbypr

NBDBWWWWWWWWWWWWW
~ArUWRRARRARARPPRWURNNPERADS
AP WPSARPPPARRPRLPAENDPPWUNDDRERE D
RPFRFNRFRPNRPRMAMR,RARRRRRARDRE
HFHERMARREMAMEDRAMRARRRRDN
HFHEERRNRDMNNDAWRNDDS
HFHENRARARNDAMRARRRERDN
ARRARARNARFLPFNWRARRLDRE

In this case, you do not need to use the distributionTextG program, because its behaviour is not defined here.

26

The first column (highlighted in color here) - the number of words in the appropriate rows; the columns follow in the order in which they
appear marked in the block of several properties, respectively - the numbers of the intervals, which include the values of the corresponding
properties. The first number on the right (highlighted in red and the only one in its line) is the number of intervals for each property (they
are all the same). Eight columns in this case to text records - means that there were 7 (= 8 - 1) given properties in the block.

White String Mode

The program can also now use ‘white lines’ mode, which means that lines that contain fewer words than needed to ensure the existence
of at least two variants of the string, do not display statistics and it is not included in the overall result. Then in the case of one metric and
the use of the distributionTextG program, you need to call the latter with an additional one argument +W (means whitelines).

For example, in this case you will see:

propertiesTextG3 sadokO.txt s 1 0 O3y +b | distributionTextG s 1

4
Tapac WEBYEHKO
BkaszemaTti
52 52 81 1.0000 1.5577 1.5577 0.78195489 3 1 CapoK BWWHEBUW KONOXAaTW
4 14 14 3.2040 3.2040 1.0000 1.52426261 3 4 Xpywi HagBUWHAMKM ryayTb
1 1 4 1.0000 2.7692 2.7692 0.53061224 3 1 Mnyratapi 3nnyramv wgyTb
36 36 40 1.0000 1.1111 1.1111 0.94736842 3 1 CnigawTb igy4yu giB4yaTa
1 1 1 1.4444 1.4444 1.0000 1.18181818 3 4 AMaTepl Be4yepATb XOAYTb
36 36 52 1.0000 1.4444 1.4444 0.81818182 3 1 CeM’'s Beueps KosoxaTtu
14 14 14 1.0000 1.0000 1.0000 1.00000000 3 2 BeyipHsa 31pOHbKa BCTaE
1 14 14 14.2400 14.2400 1.0000 1.86876640 3 4 [louka BeyepATb NOpae
37 37 37 1.0000 1.0000 1.0000 1.00000000 3 2 AMaTn xo4ye Hay4daTu
1 4 4 4.0000 4.0000 1.0000 1.60000000 3 4 Tak conoBenWKo Hepae€
36 40 40 1.1111 1.1111 1.0000 1.05263158 3 4 [foknana MaTu KonoxaTtwu
1 1 1 1.0000 1.0000 1.0000 1.00000000 3 2 ManeHbKMX [iTOYOK CBOIX
1 4 4 4.4444 4.4444 1.0000 1.63265306 3 4 CamMa 3acHyna Konomix

27

10 10 37 1.0000 3.7000 3.7000 0.42553191 4 1 3aTuUXxno0 BCe TinbKo piBYyaTa
TaconoBenKO He3aTux
MixiTpaBH#

C-NeTepbypr

1 2 3 4

5 3 0 6

35.71% 21.43% 0.00% 42.86%
1.0974+-0.4077 © 14

2 3 4 5 6 7
0 13 1 0 0 0

>k 5k 5k >k >k 5k 5k >k >k 5k 5k 3k >k 3k 5k 5k >k >k 5k 5k >k >k 3k 5k 5k >k >k 5k 5k >k >k 5k 5k >k >k 3k 5k 5k >k >k 5k 5k >k >k K 5k 5k >k 3k 5k 5k >k >k 5k 5k >k >k >k 5k 5k >k >k 5k 5k >k >k 5k 5k 5k >k 3k 5k 5k >k >k 5k 5k >k >k >k 5k 5k >k 3k 5k 5k >k >k 3k 5k >k >k >k 5k 5k >k kok ok >k k k

4 3 . 6

1

0 0 0 0
4 3 0 6
1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

The ‘white’ lines here are shown in light colour but not white.

28

Fixed-line statistics (+b)

If you specify as one of the command line arguments for propertiesTextG3 characters +b, the program will calculate all statistics, as
if the last word is fixed by constraint and does not move. In fact, in this case, the meaning of this symbol (argument) is similar to the
lineVariantsG3 program. It is necessary to remember that it narrows a range of admissible values of properties and at invariable quantity
of lines changes distributions inside the intervals.

Control the number of intervals

There are three possible cases:

+ “s” —the number of intervals will be determined by the well-known Sturge’s rule where the number of tests will be equal to the resulting
number of lines;

* “I” = the number of intervals will be determined on the recommendation of V. P. Levinsky (see: Onps A. T. Ctatuctuka (MoaynbHui
BapiaHT 3 NporpaMoBaHoO0 GOPMOIO KOHTPOJIIO 3HaHb). — HaBu. noci6. — K.: LleHTp y4y60Boi nitepatypu, 2012. - 448 c. ISBN
978-611-01-0266-7. C. 60);

+ the number of intervals will be a natural number (must be greater than 1, although this is not checked);

+ something else - will be used 9.

You can also control whether to print lines of the text

If this argument is 1, then to the right of the numerical data of the ordinal statistics a line that is analyzed will also be displayed (already
converted for analysis). Otherwise the string will not be displayed in the output.

29

Control the division of text into lines

If you specify 1 here, the text will firstly be grouped into one line, and then divided into lines by the method of division in half (by the number
of words or their cocatenations) until the length of all lines is less than 8 words or their combinations. Foreign characters will be filtered.
If set to 0, the text will be parsed after filtering out extraneous characters (approximately) in the lines that were originally.

Whether to use ‘growing lines’ mode

If among the command line arguments you specify “+gab”, where a, b are some digits except 0, then the ‘growing lines’ mode is used. This
means that the text is transformed in a way so that at first the maximum number of words in lines is no greater than the second digit and
then the lines are grouped so that the number of words in every line is close to the first digit if it can be achieved by concatenation of the
lines into the single one consequently. In other words, there will be done some transformation of the text by lines to make the number
of words in every line closer to the first digit and no more than 7 (for the last one the quotient is used). In such a case, the control of
division of text into lines plays less role, but it can influence if it is equal to 1. For example, “+g73” as a command line argument means
that after the application of the division of the lines all them are partitioned so that in every line there are at first no more than 3 words
or their concatenations and then the lines are concatenated so that in every of them there are a number of the words close to 7 (and no
more).

The same argument for the number of rows

It means there should be the same value, as in the place of control of the number of intervals.

Whether to display serial data as well

Here it is necessary to put 1 so that the program prints all statistics (at first by lines, and then the general on the text), otherwise only the
general text is printed.

30

Selective analysis of text by lines

If you execute a command
propertiesTextG3 <path to the file with Ukrainian text for analysis> @n

then the text from the file will be displayed on the screen and will be shown with the numbers of all lines to the left of the lines themselves,
separated from the text using the tab character (displayed as a space with a non-constant width, which depends on the system settings).
Then you can run the same program (you can do without it, but you can specify other numbers than the program will consider) for analysis
the selected rows. To do this, to the commands propertiesTextG3, in addition to the last mentioned, anywhere in the command line to the
vertical bar (up to pipeline) add the first and last line numbers, separated by a colon (without any other characters, including spaces). You
can specify several such pairs, the information will be displayed in the same order. If some line numbers will occur several times, they
will be displayed (if this option is specified) and analyzed several times (probably, due to the laziness of Haskell programming language,
they can use (if they are not garbage collected till the time of re-usage) the once calculated and memoized results). If text break control
is specified on lines equal to 1, then the program will combine and analyze the lines whose numbers were specified and correspond to the
numbers when outputting the command from @n.
All this allows you to focus on the text or only part of it.

Working with rewritePoemG3

Verify that the folder (directory) where cabal installed the executables of the programs is available for search in the PATH environment
variable.
Then enter the command at the command prompt (or terminal):

rewritePoemG3 <first argument > [<whether to grow lines>] <Ukrainian text file>
<property type> <numerical arguments>

and press Enter.
You will see something like the following:

rewritePoemG3 10.0 1.2 “sadok.txt” yyy 51 2

Upon successful completion of the program (there should be no messages) in the same folder (directory) as the file with the text that is
overwritten, there must be a file with the additional ending ".new.txt’. It is there that the converted text (for example, a poem) is written
according to the input data.

The entered data applies to the entire text, to each line of text in particular (after its preliminary processing by the program).

More complex usage
Numeric arguments have much the same meaning as for the lineVariantsG3 program.

31

32

Numeric arguments, if specified, have the following meaning.

The first numeric argument is the number of intervals into which the interval between the minimum and maximum value of the property
for this line. If not specified, it is considered equal to 1. A value of 0 does not allow other numeric arguments to further change the result
of the work of the program.

All subsequent numeric arguments (if specified, otherwise no permutations occur) are interval numbers that will be swapped with the
interval with the maximum values of the property. This allows you to change the structure of the data that is displayed as a result of
the program and see the internal (not maximum) items. For example, the numeric arguments 6 1 4 (in this order) will mean that during
program execution the interval between the maximum and minimum value of the property will be divided into 6 equal intervals, with the
elements that are in the first and fourth, counting from the minimum (interval number 1) will be moved to the maximum number (and
property values) interval, and then the line with the maximum value of the property is written to the output file. Values that were in the
maximum interval will be moved to the interval with the lowest number among those that are moved to maximum.

Comparative mode of operation (+c)

rewritePoemG3 can also be run in so-called ‘comparative’ mode, when it offers strings (one after the other) of two specified files and writes
the selected (or blank line, if none is selected) to the third file. So from two files by their comparison by lines you can create a new one. It
also allows you to run the program twice or more times with different settings in the normal mode, then run it in the comparative mode on
the received files and create in a fairly easy way their combinations - new variants.

Note: If you plan to get more ‘hints’ and recommendations from the program, it is probably easier (and better) to apply an interactive
mode of the lineVariantsG3 program with several properties instead.

To operate in the comparative mode, use the following command:

rewritePoemG3 +c <filel> <file2> <file3>

(all files must be different, and the first two ones must already exist with the text, otherwise the program will not give a significant result).

Types of properties

One of the principles of the program is to search among the text options for those for which the maximum is the value of a function called
‘property’ of the text (just simply: property) and is a specific property for lines. The user can choose the property that will be used during
program operation (this is done in the command line once during program operation by the geven (or absent respectively) command line
argument). The command line argument of the program call can be:

+ 'y0’ - the first property in time, based on 'periods of uniqueness’. The idea is to estimate the number of sounds, or pauses, or phonetic
phenomenae (palatalization of consonants), which are between successive appearances of each sound not in one, but in different
words, and the total sum of such distances for different words is sought. The greater the value corresponds to the text with a
smoother variable phonetic pattern, (probably) depending on the average number of sounds in the ‘period of uniqueness’ it may be
easier to speak, otherwise it is (may be) harder to speak; less meaningful - on the contrary - text with more rapid changes in phonetic
pattern, possibly with amplification of separate groups of sounds, which is more typical for intonationally selected and / or poetic
texts with appealed or highlightened emotions. When using this property (and only it) the first argument of the program call string
does not matter (it is ignored by the program).

« ‘0y’is the first version of the rhythm-only analysis property (semi-empirical), based on the function of rhythm, that uses the durations
of sounds that have been synthesized in the mmsyn6ukr-array software package. The rhythm function is inspired by antiquity poetry,
where instead of stressed and unstressed syllables rhythmically short and long alternated; also musical destinies for which the main
ones are two-part rhythm and three-part rhythm. The function is implemented in such a way as to make it as easy as possible to
capture significant emissions subrhythms for two-syllable and three-syllable cases. Using the <first argument> you can change the
ratio of these subproperties and, accordingly, to change the property itself.

+ '02y’ is a 'Oy’-like property that uses other durations of sounds synthesized by the r-glpk-phonetic-languages-ukrainian-durations.

33

34

Probably one of the most accurate in this version of the available for the task of writing rhythmic text. You can create other variations
of sound durations using the capabilities of the package r-glpk-phonetic-languages-ukrainian-durations or in some other way.

+ '03y’ is a '02y’-like property that uses other durations of sounds synthesized by the r-glpk-phonetic-languages-ukrainian-durations

package. Probably one of the most accurate in this version of the available for the task of writing the rhythmic text. You can create
other variations of sound durations using the capabilities of the package r-glpk-phonetic-languages-ukrainian-durations or in some
other way.

+ '04y’ is a '02y’-like property that uses other durations of sounds synthesized by the r-glpk-phonetic-languages-ukrainian-durations

package. These sound durations are derived from data other than Oy, 02y and 03y, so be careful while mixing them in a multiple
properties mode.

« 'y’ - a property that calculates the properties of 'y0’ and 'Oy’ in a more efficient way than each of them alone, and then multiplies the

received data. Gives higher values for lines with a more smoothly changing phonetic pattern and those that are more rhythmic (from
the point of view of the property '0y’). The use of the <first coefficient> internally affects only the sub-property '0y’.

- 'y2'is a property similar to ‘y’, but uses the variant with '02y’ instead of the second sub-property (rhythmicity).
« 'y3’is a property similar to 'y’, but uses the variant with '03y’ instead of the second sub-property (rhythmicity).
« 'y4' is a property similar to 'y’, but uses the variant with '04y’ instead of the second sub-property (rhythmicity).

« 'yy’ - a property that uses the property 'y0’ and '0y’, and instead of multiplying them, divides the result of the second by the result of

the first. Maximized for texts with high rhythmicity (in terms of the 'Oy’ property) and grouping of identical sounds into the groups
that are closer to each other. The use of the <first coefficient> affects only the sub-property ‘Oy’.

« 'yy2' - a property that uses the property 'y0’ and '02y’, and instead of multiplying them, divides the result of the second by the result of

the first. Maximized for texts with high rhythmicity (in terms of the property '02y’) and grouping of identical sounds in groups closer
to each other. The use of the <first coefficient> internally affects only the sub-property '02y’.

« 'yy3' - a property that uses the property 'y0’ and '03y’, and instead of multiplying them, divides the result of the second by the result of

the first. Maximized for texts with high rhythmicity (in terms of the property '03y’) and grouping of identical sounds in groups closer
to each other. The use of the <first coefficient> internally affects only the sub-property '03y’.

. 7272

35

‘yy4' - similar to 'yy’ with the difference that instead of 'Oy’ is used '04y’.
'Z' -line

’

zz3'

'zz4' These properties are similar to the corresponding ones, where z is replaced by y. But they use more complex rhythmic func-
tions derived from the module Languages.Rhythmicity.Factor from the package phonetic-languages-rhythmicity. Carefully use mixed
properties in multiple properties mode, because they actually represent different approaches within the general method, so they can
give in pairs less compatible results, but when used correctly they give an acceptable result. You may need a little practice, also
more often use the propertiesTextG program.

Besides, while working with the following properties the concept of the polyrhythmicity as a source of rhythmicity is used.

36

"w01” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another
maximum one influences less. As a variant of the durations calcuation function syllableDurationsD is used;

« "w02" — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text

with rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another
maximum one influences less. As a variant of the durations calcuation function syllableDurationsD2 is used;

+ "w03” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text

with rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another
maximum one influences less. As a variant of the durations calcuation function syllableDurationsD3 is used;

"w04" — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one maximum value the most significantly influences the rhythmicity and another
maximum one influences less. As a variant of the durations calcuation function syllableDurationsD4 is used;

"w11” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD is used,;

+ "w12” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text

with rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD2 is used,;

"w13" — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD3 is used;

"w14” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the two maximum values the most significantly influence the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD4 is used,;

37

"w21” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two
maximum ones influence less. As a variant of the durations calcuation function syllableDurationsD is used;

« "w22" — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two
maximum ones influence less. As a variant of the durations calcuation function syllableDurationsD2 is used;

+ "w23” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two
maximum ones influence less. As a variant of the durations calcuation function syllableDurationsD3 is used;

"w24" — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and two
maximum ones influence less. As a variant of the durations calcuation function syllableDurationsD4 is used;

"w31” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD is used;

+ "w32"” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD2 is used,;

"w33" — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD3 is used;

"w34” — more complex rhythmic structure with some another way of determining the property value, it takes the string as the text
with rhythmic groups of 4 syllables each where the one minimum value the most significantly influences the rhythmicity and another
minimum one influences less. As a variant of the durations calcuation function syllableDurationsD4 is used;

38

"x01” — similarly to the “w01”, but with more complex dependency for the less significant duration and probably less prognosable
results;

"x02" - similarly to the “w02", but with more complex dependency for the less significant duration and probably less prognosable
results;

+ "x03” — similarly to the “w03", but with more complex dependency for the less significant duration and probably less prognosable

results;

+ "x04” — similarly to the “w04", but with more complex dependency for the less significant duration and probably less prognosable

results;
The following values are similar to the corresponding “w” with more complex dependency (as just described ones). Among them:

"x11"
"x12"
"x13"
"x14"
"x21"
"x22"
"x23"
"x24"
"x31"
"x32"
"x33"

39

. "X34"

If this argument is as follows, then a polyrhythmic analysis of the text is used. More complex properties of the text are searched and
checked using more comprehensive by structure properties. This is a research direction in the programs and library usage. Besides
there is a possibility also to specify your own custom configuration using the ‘c’, ‘C’, ‘N’ modes. Therefore, the following is used:

« "u01” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of
5 syllables. For syllable durations is used syllableDurationsD;

+ "u02” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of
5 syllables. For syllable durations is used syllableDurationsD2;

+ "u03” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of
5 syllables. For syllable durations is used syllableDurationsD3;

+ "u04” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 and even less highlighted 1 maximae, the groups of
5 syllables. For syllable durations is used syllableDurationsD4;

+ "u11” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD;

+ "u12” il A polyrhythm with the most highlighted 1T maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD2;

+ "u13” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD3;

+ "u14” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 maximae and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD4;

« "u21” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD;

40

« "u22” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD2;

+ "u23” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD3;

« "u24” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD4;

+ "u31” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD;

« "u32” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD2;

+ "u33” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD3;

« "u34” -> A polyrhythm with the most highlighted 1 maximum, less highlighted 2 minimae and even less highlighted 1 minimum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD4;

+ "u41” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1T maximum and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD;

« "u42” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD2;

+ "u43” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1T maximum and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD3;

« "u44” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 maximum, the

groups of 5 syllables. For syllable durations is used syllableDurationsD4;

41

« "u51” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD;

+ "u52” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD2;

« "u53” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD3;

+ "u54” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 maximum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD4;

« "u61” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD;

+ "u62” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD2;

+ "u63” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1T minimum and even less highlighted 1 maximum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD3;

+ "u64” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 maximum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD4;

« "u71” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD;

+ "u72" -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD2;

« "u73” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD3;

42

- "v01” and other “v

"u74” -> A polyrhythm with the most highlighted 2 maximae, less highlighted 1 minimum and even less highlighted 1 minimum, the
groups of 5 syllables. For syllable durations is used syllableDurationsD4;

“"_n

— are analogous to the corresponding “u” lines with that difference that they use only increasing function variants
for the rhythmicity estimation. This makes them the more straightforward ones.

"s01” and other “s” — are analogous to the corresponding “u” lines with that difference that they group syllables into groups of 6, not
5.

+ "t01" and other “t” lines — are analogous to the corresponding “s” lines with that difference that they only use increasing function

variants for the rhythmicity estimation. This makes them the more straightforward ones.

“S” line corresponds to the properties of the “s” line with the difference that the following function is used: i. e. rhythmicityPoly-
WeightedF2;

« “T" line corresponds to the properties of the “t” line with the difference that the following function is used: i. e. rhythmicityPoly-

WeightedF20;

“U” line corresponds to the properties of the “u” line with the difference that the following function is used: i. e. rhythmicityPoly-
WeightedF2;

+ “V" line corresponds to the properties of the “v” line with the difference that the following function is used: i. e. rhythmicityPoly-

WeightedF20;

“W” line corresponds to the properties of the “u” line with the difference that the following function is used: i. e. rhythmicityPoly-
WeightedF3;

« “X”" line corresponds to the properties of the “v” line with the difference that the following function is used: i. e. rhythmicityPoly-

WeightedF30;

“Y” line corresponds to the properties of the “s” line with the difference that the following function is used: i. e. rhythmicityPoly-
WeightedF3;

43

« “Z" line corresponds to the properties of the “t” line with the difference that the following function is used: i. e. rhythmicityPoly-
WeightedF30;

The following property lines try to increase the significance of the text ending and decrease the significance of its beginning.

+ “I” line corresponds to the properties of the “W" line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedEF2;

+ “J"line corresponds to the properties of the “X" line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedEF20;

+ “K" line corresponds to the properties of the “Y” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedEF2;

+ “L" line corresponds to the properties of the “Z" line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedEF20;

+ “0" line corresponds to the properties of the “U” line with the difference that the following weighted function is used: rhythmicity-
PolyWeightedEF3;

« “P” line corresponds to the properties of the “V” line with the difference that the following weighted function is used: rhythmicity-
PolyWeightedEF30;

+ “Q" line corresponds to the properties of the “S” line with the difference that the following weighted function is used: rhythmicity-
PolyWeightedEF3;

« “R"line corresponds to the properties of the “T” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedEF30;
Starting from the version 0.10.0.0 there are introduced also the following properties:

“_n “"_n

0" line corresponds to the properties of the “u” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLF2;

44

“"_n “u_n

p” line corresponds to the properties of the “v” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLF20;

+ “q” line corresponds to the properties of the “s” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLF2;

“"_n

r” line corresponds to the properties of the “t” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLF20;

+ “k” line corresponds to the properties of the “u” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLF3;

" I n “u_n

line corresponds to the properties of the “v” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLF30;

* “m” line corresponds to the properties of the “s” line with the difference that the following weighted function is used: rhythmicity-

PolyWeightedLF3;

* “n” line corresponds to the properties of the “t” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLF30;
The following lines try to increase the importance of the line ending and to decrease the importance of the its beginning.

+ “g" line corresponds to the properties of the “u” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLEF2;

“"_n

+ “h” line corresponds to the properties of the “v” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLEF20;

+ “i" line corresponds to the properties of the “s” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLEF2;

“"n

* “|” line corresponds to the properties of the “t” line with the difference that the following weighted function is used: rhythmicityPoly-

WeightedLEF20;

45

" n

+ “b” line corresponds to the properties of the “u” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLEF3;

“_n

+ “d” line corresponds to the properties of the “v” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLEF30;

“_n “u_n

e" line corresponds to the properties of the “s” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLEF3;

« “f” line corresponds to the properties of the “t” line with the difference that the following weighted function is used: rhythmicityPoly-
WeightedLEF30;

Custom configuration properties

“u_n upn u n u n u n oupE=n upE=n o n u

If the property type starts with one of the “c”, “A”, “B”, “C”, “D”, “E", “F", “M”, “N” then the program tries to parse this property as a encoded
configuration of the polyrhythmicity. A mode for the developers and researchers, there can be used even more complex polyrhythmic
structures. For example, "c114+112=2" returns as a polyrhythm structure data P1 (Ch 1 1 4) (Rhythm 1 1 2) 2, that means that the
1 most highlighted maximum, and 1 less highlighted maximum is searched in the groups of 4 syllables using syllableDurationsD2;
"ctttff7+112111=7*3" returns as a polyrhythm structure data P2 (PolyCh [True,True, True,False,False] 7) (PolyRhythm [1,1,2,1,1,1]) 7
3, that means that the 1 most highlighted maximum, and 1 less highlighted maximum, and 2 even less highlighted maximae, and 1
even less highlighted minimum, and 1 even less highlighted minimum in the groups of 7 syllables using the syllableDurationsD3 etc.

While using the new properties of the “A”, “B”, “C”, “D”, “E”, “F", “M" and “N” lines there will be used ‘weighted’ functions (highly ex-
perimental ones, though hopefully effective) that try to take into account also the significance of the place of the line part e. g.
internally there will be used such functions as rhythmicityPolyWeightedLEF2, rhythmicityPolyWeightedEF2, rhythmicityPolyWeight-
edF2, rhythmicityPolyWeightedLF2, rhythmicityPolyWeightedLEF3, rhythmicityPolyWeightedLF3, rhythmicityPolyWeightedEF3 and
rhythmicityPolyWeightedF3 respectively, all from the module Rhythmicity.PolyRhythm.

Tip: If there are no results in the program output using multiple properties (an empty output), increase the number of groups in
properties (for at least one) and / or add interval transforms to change the internal structure of certain properties.

46

The first argument

For the first time the program can be used without this argument, or by entering in its place 1_. You may want to in the future to deepen
the analysis. Then you can also specify the first argument (it is the first in the list of command line arguments, not counting the group -
if available - between arguments +a and -a) in the form number1,,umber2, wherenumberlandnumber2—decimalpositive fractionsorpositivers

3.4_22.987_0.7865 0.0001_ etc.

The first number is a coefficient multiplied by the component of the property that is responsible for the rhythmicity of the two-syllables
based verse system, and the second - for rhythmicity of three-syllables based verse system. Accordingly, a successful combination can
emphasize, combine or eliminate, reduce the effect of rhythm for two-component or three-component based verse system.

In the absence of this argument, the programs behave as if it were equal to 1_1.

47

48

Constraints

When you run the lineVariantsG3 program you can specify as command arguments constraints string. They allow to reduce the number
of calculations, to consider only certain options (for example, with a certain definite order of some words, etc.) that allows you to actually
expand the program capabilities. These limitations are encoded as command arguments line between two special notation ‘brackets’ ‘+a’
and -a’. They form a group of arguments that can stand anywhere in the input line data. Depending on these arguments, the program asks
or does not ask an additional question for verification and confirmation (that is called double check).

There are 6 types of constraints, they can be arbitrarily combined, but with respect to boundaries for each of them.

The figure shows that all types implemented with one argument that is the same for all of them - the number of words (or their combina-
tions) in a line. The user, having started the program, can no longer adjust during its work this amount, but it is important for limitations
in general. None of the digital characters in the constraints should be greater than this number, also this number is not more than 6 and
not less than 0. Also a necessary condition is that no numeric characters within one encoded constraint cannot be repeated twice. For
example, the following constraints are obviously not valid: Q2235 (repetition of digits), E2 (digital characters where they do not exist),
T247 (7 is greater than 6), FO (one character instead of the required two), A37523 (7 is greater than 6), B5 (one symbol, and there must be
other(s) one(s)). Incorrectly set constraints will either not affect the result (although it will be expected otherwise), or will cause runtime

49

50

exception and program shutdown. Since the result of their application is not simple, so the program at its work displays a line to which
the entered constraints will be applied with an additional question, whether all data are entered correctly.

The types of costraints and their values are given in more detail in the table.

Constraint E — Without entering additional digital characters — Corresponds to the absence of additional constraints, so does
not affects the end result.

Constraint Q - 4 pairs of unequal digits in range from 0 to the number of words or their comcatenations minus 1 — Numbers are
indices of 4 words or their concatenations, the mutual order of which during the permutations will be saved as follows. Also,
if these words are the same (excluding uppercase and lowercase letters), then it is a convenient way to reduce the amount of
data to be analyzed.

Constraint T — 3 pairs of unequal digits in range from 0 to the number of words or their concatenations minus 1 — Numbers are
indices of 3 words or their concatenations, the mutual order of which during the permutations will be saved as follows. Also,
if these words are the same (excluding uppercase and lowercase letters), then it is a convenient way to reduce the amount of
data to be analyzed.

Constraint F — 2 pairs of unequal digits in range from 0 to the number of words or their combinations minus 1 — Numbers are
indices of 2 words or their concatenations, the mutual order of which during the permutations will be saved as follows. Also,
if these words are the same (excluding uppercase and lowercase letters), then it is a convenient way to reduce the amount of
data to be analyzed.

Constraint A — 1 digit and a few more in pairs unequal numbers (all among themselves unequal) to the right of it within -
The first digit is the index of the element relative to which the placement of all other elements is determined (words or their
combinations); all other numbers on the right are indices of the elements that should stand in the resulting permutations to the
RIGHT of the element with from the element with the index equal to the first digit.

Constraint B — 1 digit and a few more in pairs unequal numbers (all among themselves unequal) to the right of it within -
The first digit is the index of the element relative to which the placement of all other elements is determined (words or their
combinations); all other numbers on the right are indices of the elements that should stand in the resulting permutations to the
LEFT of the element with from the element with the index equal to the first digit.

Parallel execution of programs

Typically, all packet programs run on a single processor core. In this case, for all programs under consideration, there is an opportunity to
enable multi-core operation - parallel computing. To do this, the command line arguments must include the following:

+RTS-N -RTS

Their placement does not affect the order and value of other command line arguments, and there may be other RTS entries parameters.
For more information on these parameters, see the documentation [9].

We can only recommend these settings for the propertiesTextG3 program. For other programs, they are not recommended, although you
can use them (they will simply increase the use of resources).

51

52

Bibliography

[1] BipwyBaHHsa — Bikinegisi. [EnekTpoHHUit pecypc] Pexxum goctyny: https://uk.wikipedia.org/wiki/BipwyBaHHsi MepeBipeHo 12
nuctonapga 2020 p.

[2] KBaHTUTaTMBHe BipliyBaHHA — Bikineais. [EnekTpoHHMI pecypc] Pexxum goctyny: https://uk.wikipedia.org/wiki/KBaHTUTaTMBHE_BIf
lMepeBipeHo 12 nuctonaga 2020 p.

[3] Cuna6iune BipwyBaHHA — Bikinegia. [EnekTpoHHMit pecypc] Pexxum gocTyny: https://uk.wikipedia.org/wiki/CunabiyHe_BipLlyBaHHS
lMepeBipeHo 12 nuctonaga 2020 p.

[4] ToHiuHe BipwyBaHHA — Bikinepia. [EnekTpoHHMI pecypc] Pexxum goctyny: https://uk.wikipedia.org/wiki/ ToHiYHe_BipLlyBaHHSA
lMepeBipeHo 12 nuctonaga 2020 p.

[5] AHTnyHe BipwyBaHHA — Bikinegis. [EnekTpoHHuit pecypc] Pexxum poctyny: https://uk.wikipedia.org/wiki/AHTUYHe_BipLLUyBaHHS
lMepeBipeHo 12 nuctonaga 2020 p.

[6] Cuna6o-ToHiuHe BipwyBaHHA — Bikinepia. [EnekTpoHHui pecypc] Pexkum pgoctyny: https://uk.wikipedia.org/wiki/Cuna6o-
TOHiYHe_BipLwwyBaHHS lNepeBipeHo 12 nuctonaga 2020 p.

[7]1 O. B. Nasep-MaHbkiB Ta iH. J1. J1. 3BOHCbKa, H. B. KoponboBa. AM6iuHa cTpoda // EHLUMKNONEANYHUIA CIIOBHUK KNaCUYHUX

MoB., 2017.

[8] WeByeHko T. T CafoKk BULWIHEBUMA KOJIO XaTW... [EnekTpoHHMiA pecypc]. Pexxum gocTyny:
http://poetyka.uazone.net/kobzar/sadok_vyshnevyi.html. MNepeBipeHo 09 nuctonaaa 2020 p.

[9] Glasgow haskell compiler user's guide. 7.5. using smp parallelism. [EnekTpoHHUn pecypc]. Pexum pgoctyny:

https://downloads.haskell.org/ghc/latest/docs/users_guide.pdf. MNepeBipeHo 10 nuctonaga 2020 p.

53

https://uk.wikipedia.org/wiki/Віршування
https://uk.wikipedia.org/wiki/Квантитативне_віршування
https://uk.wikipedia.org/wiki/Силабічне_віршування
https://uk.wikipedia.org/wiki/Тонічне_віршування
https://uk.wikipedia.org/wiki/Античне_віршування
https://uk.wikipedia.org/wiki/Силабо-тонічне_віршування
https://uk.wikipedia.org/wiki/Силабо-тонічне_віршування
http://poetyka.uazone.net/kobzar/sadok_vyshnevyi.html
https://downloads.haskell.org/ghc/latest/docs/users_guide.pdf

o4

BIBLIOGRAPHY

[10] Cmarnii I A. Teopia My3uku : Migpyy. ANa HaBY. 3aKJ/1. OCBITH, KyNbTypy i MUCTeUTB., 2013.

[11] OleksandrZhabenko. dobutoko-poetry. [EnekTpoHHuiA pecypc). Pexxum aoctyny: https://hackage.haskell.org/package/dobutokO-
poetry-0.8.1.0. NepeBipeHo 09 nuctonaga 2020 p.

[12] Oleksandr Zhabenko. phonetic-languages-rhythmicity. [EnekTpoHHUiA pecypc]. Pexum goctyny:
https://hackage.haskell.org/package/phonetic-languages-rhythmicity. NepeBipeHo 24 cepnHs 2020 p.

https://hackage.haskell.org/package/dobutokO-poetry-0.8.1.0
https://hackage.haskell.org/package/dobutokO-poetry-0.8.1.0
https://hackage.haskell.org/package/phonetic-languages-rhythmicity

